首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
以N,N-二甲基丙烯酰胺(DMA)为单体,N,N-胱胺二丙烯酰胺(CBA)为交联剂,在氧化石墨烯(GO)水分散液中进行自由基原位聚合,制备了高强度PDMA/GO复合水凝胶,研究了GO和交联剂CBA的含量对复合水凝胶性能的影响。结果表明,复合水凝胶的热稳定性、拉伸强度和压缩强度随GO和CBA含量的增加而增加,其平衡溶胀比随GO含量的增加而减小。利用CBA的二硫键可以还原断裂的性质,通过热重分析测定了PDMA在GO表面的接枝效率。结果表明,GO不是简单共混在水凝胶中,而是起到了交联剂的作用,使得复合水凝胶具有优良的拉伸强度和压缩强度。  相似文献   

2.
用溶液聚合制备了一系列不同膨胀石墨含量的聚N,N-二乙基丙烯酰胺/膨胀石墨复合水凝胶,研究了膨胀石墨的量对复合水凝胶溶胀以及水释放性能的影响。利用XRD及SEM对复合水凝胶的微观结构及相结构进行表征。结果表明,在超声作用下膨胀石墨解离成10 nm~50 nm厚石墨片分散到复合水凝胶内,随着膨胀石墨量的增加,复合水凝胶的水释放性能增加,但溶胀性能呈现增加后减小的趋势。  相似文献   

3.
以氧化铝(Al_2O_3)纳米粒子作为无机交联剂,丙烯酰胺(AM)和衣康酸(IA)为单体,原位自由基聚合制备了高强度PAI/Al_2O_3纳米复合水凝胶,并提出了水凝胶的交联机理。对纳米复合水凝胶的力学性质、微观结构和溶胀性质进行了表征。结果表明,制备的水凝胶具有优异力学性能,拉伸和压缩强度分别可达477 k Pa和13.45 MPa。此外,PAI/Al_2O_3纳米复合水凝胶还表现出透明的外观,规整的网络结构,较低的溶胀率以及水驱动的形状记忆行为。因此,这种水凝胶在生物医学领域有广阔的应用前景。  相似文献   

4.
以氧化铝(Al_2O_3)纳米粒子作为无机交联剂,丙烯酰胺(AM)和衣康酸(IA)为单体,原位自由基聚合制备了高强度PAI/Al_2O_3纳米复合水凝胶,并提出了水凝胶的交联机理。对纳米复合水凝胶的力学性质、微观结构和溶胀性质进行了表征。结果表明,制备的水凝胶具有优异力学性能,拉伸和压缩强度分别可达477 k Pa和13.45 MPa。此外,PAI/Al_2O_3纳米复合水凝胶还表现出透明的外观,规整的网络结构,较低的溶胀率以及水驱动的形状记忆行为。因此,这种水凝胶在生物医学领域有广阔的应用前景。  相似文献   

5.
先用马来酸酐对纳米纤维素晶体(NCC)进行表面改性得表面含碳-碳双键的改性NCC(mNCC),然后将丙烯酰胺(AM)和mNCC一起光聚合得PAM/mNCC纳米复合水凝胶;通过红外光谱、扫描电镜、热重分析、差热分析、溶胀实验和拉伸实验研究了水凝胶的结构和性能。结果表明,PAM/mNCC纳米复合水凝胶是一种物理/化学共交联水凝胶;与用质量分数0.25%N,N-亚甲基双丙烯酰胺交联的PAM水凝胶相比,PAM/mNCC纳米复合水凝胶中的微孔尺寸分布更宽,PAM分子链的起始分解温度和玻璃化转变温度升高;当mNCC的用量占AM质量的5%~10%时,PAM/mNCC纳米复合水凝胶的饱和溶胀率、拉伸强度、断裂伸长率分别为PAM水凝胶的2.1~2.7倍、0.45~1.1倍、3.8~7.1倍。  相似文献   

6.
采用Co~(60)-γ射线辐照交联法制备细菌纤维素/聚谷氨酸(BC/PGA)复合水凝胶。采用红外光谱和扫描电子显微镜等对复合水凝胶的结构进行表征,研究了BC引入对复合水凝胶的凝胶分数、热失重、溶胀性能、压缩性能和流变性能的影响,并利用CCK-8法对复合水凝胶进行了细胞毒性评价。研究结果表明,辐照作用下BC纳米纤维和PGA形成双交联复合凝胶网络,BC可有效增加复合水凝胶的压缩强度、储能模量(G')和凝胶分数,降低复合水凝胶的平衡溶胀度。50kGy辐照剂量下,相对于纯PGA水凝胶,复合水凝胶压缩强度增大5倍,G'增大10倍。同时复合水凝胶无细胞毒性,可安全应用于生物医学领域。  相似文献   

7.
采用冷冻-解冻方法制备了物理交联的聚乙烯醇/氧化石墨烯复合水凝胶。采用热失重、X射线衍射、差示扫描量热、扫描电镜、力学性能、溶胀性能及离子强度敏感性等分析对制备的复合水凝胶进行了表征,研究了氧化石墨烯(GO)含量、冷冻-解冻循环次数、聚乙烯醇(PVA)浓度对复合水凝胶性能的影响。研究结果表明,复合水凝胶呈现出三维多孔网络结构;随着GO含量的增加,水凝胶的热稳定性增强、熔融温度上升,拉伸强度和压缩强度也得到明显提高,说明GO在复合水凝胶中起到了物理交联剂的作用;复合水凝胶的平衡溶胀比随着GO含量的增加而增大,但当GO的质量分数超过0.4%时逐渐减小;增加冷冻-解冻循环次数或PVA浓度,水凝胶的拉伸强度和压缩强度增大,力学性能得到显著改善。  相似文献   

8.
以聚乙二醇与马来酸酐的双酯化产物(MAh-PEG-MAh)、丙烯酰胺(AM)为单体,N,N’-亚甲基双丙烯酰胺(BIS)或对二乙烯基苯(DVB)为交联剂,通过原位自由基共聚法合成了一种复合水凝胶。利用FT-IR、1H-NMR、SEM、TEM表征了凝胶结构和形态;利用XRD研究了凝胶的结晶性;研究了单体用量、分子链段长度、交联剂等因素对凝胶力学性能的影响。研究表明,柔性链段MAh-PEG-MAh以一定尺寸的聚集微区分散于PAM连续相,增强水凝胶的结晶性,且分散相与连续相之间有良好的作用力,当MAh-PEG1K-MAh与AM的物质的量比为1∶8,复合水凝胶的压缩强度达到18.2 MPa左右,力学性能最佳。  相似文献   

9.
将聚丙烯酸钠引入纳米Fe3O4/γ-甲基丙烯酰氧基丙基三甲氧基硅烷(TPM)/聚丙烯酰胺(PAM)磁性复合水凝胶体系中,制备了互穿聚合物网络(IPN)超强磁性水凝胶。采用透射电镜(TEM)、激光粒度分析仪、扫描电镜(SEM)、压缩试验机和样品振动磁强计对Fe3O4纳米粒子的粒径、Pickering乳液的结构及水凝胶的结构与性能进行了测试与表征。结果表明,IPN改性水凝胶在保持原复合水凝胶优异性能的基础上,其断面结构比未改性的更为规整,水凝胶的内部缺陷减少;改性水凝胶的抗压强度可达2.8MPa以上,远高于未改性水凝胶的强度;改性水凝胶需要约50min达溶胀平衡,平衡时的溶胀率为24.9;改性后的水凝胶中Fe3O4纳米粒子的磁性并未受到影响。  相似文献   

10.
通过自由基聚合制备一系列不同蒙脱土(MMT)含量的PAMPS(聚2-丙烯酰胺-2-甲基丙磺酸)/PAM(聚丙烯酰胺)/MMT水凝胶。结果表明,MMT的加入有助于水凝胶平衡溶胀率的增加,且提高水凝胶的机械性能,其中最大杨氏模量为24.0kPa,屈服强度为372kPa,最大压缩模量为40kPa,压缩断裂应力为24.8MPa。对水凝胶断面微观形貌分析表明,MMT的加入使得复合水凝胶网络的孔径逐渐变小,网络的孔壁也逐渐变厚。  相似文献   

11.
通过酸碱处理和机械研磨结合的方法制备纳米纤维素(CNFs),并利用冻融循环法分别制备了聚乙烯醇(PVA)和纳米纤维素/聚乙烯醇(CNFs/PVA)复合水凝胶,以及聚乙二醇(PEG)改性PVA和CNFs/PVA复合水凝胶。考察不同配方下复合水凝胶的微观形貌变化,并对复合水凝胶的溶胀性能、压缩强度及热稳定性能进行研究。结果表明,CNFs与PEG对PVA水凝胶的微观形貌均有改善作用,加入PEG后形成的PEG/PVA凝胶产生明显的三维网络结构。当PEG与CNFs同时加入到PVA凝胶后形成的CNFs-PEG/PVA凝胶具有均匀的互穿孔洞结构,此时复合水凝胶的孔隙率最高((67.5±4.3)%),溶胀度最好(980%),且压缩强度较PVA水凝胶也有所提升。PEG对复合凝胶的热稳定性无影响,而加入CNFs后,CNFs-PEG/PVA复合凝胶的初始热分解温度从235℃上升至300℃,显著提高了PVA凝胶的热稳定性。  相似文献   

12.
通过SLA 3D打印和离子交联的方法制备出聚乙二醇二丙烯酸酯(PEGDA)/海藻酸钠(SA)复合水凝胶。探究了PEGDA和SA不同含量对复合水凝胶溶胀性能、力学性能和热动态分析的影响。溶胀测试结果表明,PEGDA含量的降低或SA含量的上升的均能有效提高水凝胶的吸水速率和平衡溶胀率;压缩性能测试结果表明,SA网络的引入有助于提高凝胶的极限压缩应变和能量耗散性能,PEGDA/SA含量为50/2.5的复合水凝胶极限压缩应变达到30.4%,比相同PEGDA含量的单网络水凝胶提升了45.4%;数字散斑分析结果表明,复合水凝胶的泊松比复合水凝胶的泊松比在0.35~0.5之间;DMA结果标明,复合水凝胶在-20~100℃之间拥有相同的物质结构,SA的加入并没有影响到材料的玻璃化转变温度。  相似文献   

13.
利用冷冻-解冻法制备了细菌纤维素(BC)/聚乙烯醇(PVA)双网络复合水凝胶,研究不同BC含量及循环周期对BC/PVA复合水凝胶力学性能和溶胀特性的影响,结果表明,随着BC含量的增多,复合水凝胶的含水率、平衡溶胀比、拉伸强度和压缩强度与普通的PVA水凝胶相比均有一定程度的提高;综合考虑,当BC含量为4%时,各项性能均达到最佳值;随着循环次数的增多,水凝胶内部的物理交联点增多,导致水凝胶的含水率下降,拉伸强度和压缩强度则有明显的上升趋势。SEM观察的结果与之前的分析是一致的。  相似文献   

14.
为改善传统化学交联水凝胶的低力学性能、透明度、溶胀度和生物相容性, 以无机纳米粒子硅酸镁锂(LMSH)作为物理交联剂, 半乳糖氨基化的丙烯酸衍生物(GAC)作为生物相容性单体, N-异丙基丙烯酰胺(NIPAM)为功能单体, 采用原位自由基聚合制备得到兼具温度敏感性和生物相容性的纳米复合水凝胶poly(NIPAM-LMSH-GAC)。结果表明: LMSH在水凝胶基体中被完全剥离, 并起到交联作用; 相比于传统化学交联剂制备的此类水凝胶, 所得物理交联的纳米复合水凝胶具有更高的溶胀度、良好的温敏性、优异的脉冲响应性, 但鼠成纤细胞(L929)在纳米复合水凝胶表面的细胞数量略低; 物理交联剂LMSH的使用和一定量的GAC的使用并没有明显改变水凝胶的体积相转变温度(VPTT), 仍保持在33℃左右。  相似文献   

15.
使用3-(甲基丙烯酰氧)丙基三甲氧基硅烷(MPS)对Si O2纳米粒子(SNPs)进行表面改性,获得带有双键的功能化Si O2纳米粒子(F-SNPs),然后将N-异丙基丙烯酰胺(NIPA)在F-SNPs分散液中原位自由基聚合,获得了高强度的PNIPA/Si O2纳米复合水凝胶(FS-NC gel)。力学性能测试与溶胀实验结果表明,与使用有机交联剂和未功能化的Si O2纳米粒子交联的水凝胶相比,FS-NC gel的力学性质明显提高,其拉伸强度和压缩强度最高可达205 k Pa和7.8 MPa,同时保持了PNIPA纳米复合水凝胶的快速响应性和温度敏感性。此外,水凝胶还表现出水驱动的形状记忆行为。  相似文献   

16.
为改善传统化学交联水凝胶的低力学性能、透明度、溶胀度和生物相容性,以无机纳米粒子硅酸镁锂(LMSH)作为物理交联剂,半乳糖氨基化的丙烯酸衍生物(GAC)作为生物相容性单体,N-异丙基丙烯酰胺(NIPAM)为功能单体,采用原位自由基聚合制备得到兼具温度敏感性和生物相容性的纳米复合水凝胶poly(NIPAM -LMSH-GAC).结果表明:LMSH在水凝胶基体中被完全剥离,并起到交联作用;相比于传统化学交联剂制备的此类水凝胶,所得物理交联的纳米复合水凝胶具有更高的溶胀度、良好的温敏性、优异的脉冲响应性,但鼠成纤细胞(L929)在纳米复合水凝胶表面的细胞数量略低;物理交联剂LMSH的使用和一定量的GAC的使用并没有明显改变水凝胶的体积相转变温度(VPTT),仍保持在33℃左右.  相似文献   

17.
PVA/P(AA-AM)复合水凝胶的制备及性能   总被引:2,自引:0,他引:2  
采用水溶液聚合方法合成了不同组成的丙烯酸-丙烯酰胺共聚物(P(AA-AM))。将聚乙烯醇(PVA)与所合成的P(AA-AM)共混,以戊二醛为交联剂,制备出了不同结构的PVA/P(AA-AM)复合水凝胶。采用扫描电镜观察了凝胶形貌,研究了复合水凝胶的结构与性能关系。结果表明,复合水凝胶溶胀性能与所用交联剂加量有关,复合水凝胶的溶胀度随着交联剂加量增加先增大后减小,在交联剂加量为0.5%时水凝胶溶胀度达到最大值。复合凝胶中的聚合物组成对溶胀度影响显著,随着P(AA-AM)含量提高,水凝胶的溶胀度逐渐增大。适当结构的复合水凝胶具有pH敏感性,敏感程度随着凝胶中P(AA-AM)含量的增加而增强。  相似文献   

18.
聚(AA-co-AM)/壳聚糖IPN超大孔水凝胶的制备及性能   总被引:1,自引:0,他引:1  
以丙烯酸、丙烯酰胺为基体,壳聚糖为添加物,N,N’-亚甲基双丙烯酰胺、戊二醛为复合交联剂,利用水溶液聚合法和发泡技术制备了聚(丙烯酸-丙烯酰胺)/壳聚糖互穿网络超大孔水凝胶。采用差示扫描量热法(DSC)、红外光谱(FT-IR)和扫描电镜(SEM)等分析技术进行了表征,研究了水凝胶的溶胀行为和凝胶压缩强度。实验结果表明,该互穿网络超大孔水凝胶具有较快的溶胀速率和较好的凝胶强度。  相似文献   

19.
通过自由基聚合一步合成了羟乙基纤维素/聚丙烯酰胺(HEC/PAM)复合水凝胶,这种水凝胶具有优异的拉伸性能和压缩性能,可能源于PAM链与HEC链之间的氢键相互作用。经测试,HEC/PAM复合水凝胶可被拉伸至原尺寸的24倍,对应的拉伸断裂应力为113kPa;90%压缩形变对应的压缩强度达0.87 MPa;水凝胶的最大压缩形变达95%以上。同时,HEC/PAM水凝胶还表现出了优异的可恢复性能。因此,HEC/PAM复合水凝胶在生物医药领域有潜在的应用价值。  相似文献   

20.
通过自由基聚合一步合成了羟乙基纤维素/聚丙烯酰胺(HEC/PAM)复合水凝胶,这种水凝胶具有优异的拉伸性能和压缩性能,可能源于PAM链与HEC链之间的氢键相互作用。经测试,HEC/PAM复合水凝胶可被拉伸至原尺寸的24倍,对应的拉伸断裂应力为113kPa;90%压缩形变对应的压缩强度达0.87 MPa;水凝胶的最大压缩形变达95%以上。同时,HEC/PAM水凝胶还表现出了优异的可恢复性能。因此,HEC/PAM复合水凝胶在生物医药领域有潜在的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号