首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为提高活性炭电极材料的比电容,本实验采用低浓度碱式碳酸镍溶液对活性炭进行氧化镍表面负载,利用碱式碳酸镍的热解特性,在引入赝电容的同时,减小负载对活性炭原有孔隙结构的影响,从而在引入赝电容的同时较好地保留活性炭的双电层电容.本实验还研究了不同数量氧化镍负载对活性炭孔结构和电化学性能的影响.实验结果表明:氧化镍负载改性后,活性炭在较好保留了原有孔隙结构的基础上,还在孔结构表面均匀负载了大量的纳米级氧化镍,改性后活性炭电极材料引入了赝电容,活性炭的比电容性能得到明显改善,且随着氧化镍负载数量的增多,活性炭比电容性能逐渐提高.  相似文献   

2.
主要研究了不同金属改性活性炭对三氯甲烷和二氯甲烷吸附性能的影响.采用浸渍法将4种不同金属离子负载改性活性炭,测定了三氯甲烷和二氯甲烷在改性活性炭上的吸附透过曲线,应用软硬酸碱理论分析和讨论了活性炭表面负载不同金属离子对二氯甲烷吸附性能的影响.结果表明,不同金属负载活性炭对三氯甲烷和二氯甲烷的吸附能力依次为:Fe(Ⅲ)-AC>Mg(Ⅱ)-AC>Cu(Ⅱ)-AC>AC>Ag(I)-AC,根据软硬酸碱理论分类,三氯甲烷和二氯甲烷属于硬碱,当活性炭表面负载硬酸类金属离子Fe~(3+)、Mg~(2+),增大了活性炭表面的硬酸性,对三氯甲烷和二氯甲烷的吸附能力加强,Ag~+属于软酸,它的负载局部增强了活性炭表面的软酸性,降低了其对三氯甲烷和二氯甲烷的吸附能力.  相似文献   

3.
采用溶胶-凝胶法对活性炭进行载钛改性,制备TiO2/AC电极材料。通过正交实验考察改性过程中无水乙醇(C2H5OH)、去离子水(H2O)、冰乙酸(CH3COOH)、盐酸(HCl)以及活性炭(AC)这五种成分的最佳加入量。利用比表面积及孔径分析仪(BET)、电化学工作站分别对材料的比表面积和电极比电容进行表征。结果表明,材料组成的最佳加入量为无水乙醇30mL、冰乙酸2mL、盐酸0.3mL、去离子水4.5mL、活性炭2g。各因素对电极的电化学性能影响大小依次为:AC量>CH3COOH量>C2H5OH量>去离子H2O量>HCl量。载钛后活性炭比表面积从680.5m2/g降为523.35m2/g,降低23.1%;比电容从116F/g升到135F/g,升高16.4%。活性炭材料负载TiO2处理后,可以加速电极双电子层的形成,提高电极比电容量。  相似文献   

4.
通过改变有机酸与无机酸的配比研究合成高电导率聚苯胺的最佳条件,使用硝酸对活性炭进行改性,测定活性炭的沉降质量和活化指数并筛选出吸附性能最佳的改性活性炭,将最佳工艺条件下合成的聚苯胺与改性活性炭进行复合制备了聚苯胺/改性活性炭复合电极材料。通过X射线衍射、扫描电子显微镜和电化学性能测试对复合电极材料的结构和性能进行表征和研究。结果表明:用质量分数3%的硝酸改性的活性炭掺杂聚苯胺,二者的相容性最好,且改性活性炭含量为25.5%(质量分数)时,制备的复合电极材料比电容最大,为282F/g,比纯聚苯胺的比容量(210F/g)增加了34.3%。电化学性能测试表明,聚苯胺/改性活性炭复合电极材料内阻小,阻抗高,电容性能优良。  相似文献   

5.
用质量分数65%的浓硝酸分别浸渍炭化前和炭化后的蚕茧,然后在不同温度条件下进行热处理,得到改性活性炭纤维材料。利用低温氮气吸附-脱附仪、傅里叶变换红外光谱仪、扫描电子显微镜和透射电子显微镜对改性前后活性炭纤维材料的孔结构和电化学性能进行分析表征。用循环伏安、交流阻抗和恒流充放电等测试方法研究了活性炭纤维电极材料的炭化温度和炭化顺序对中孔炭孔结构及电化学性能的影响。结果表明:随着炭化温度的升高,活性炭纤维电极材料比表面积和孔容逐渐增加;炭化温度为600℃时,采用先炭化后吸附方法制备的活性炭纤维电极材料比电容可以达到124.56F/g,比先吸附后炭化制备的样品比电容(82.69F/g)提高了约51%。  相似文献   

6.
NiO-改性活性炭电极电化学电容器研究   总被引:1,自引:0,他引:1  
为提高普通活性炭材料的电化学性能,用Ni(NO3)2溶液浸渍法和高温热解对活性炭进行改性处理.分别采用氮气吸附法、SEM、XPS等方法分析研究改性炭材料的比表面积、孔结构、形貌和组成;用循环伏安、恒流充放电等电化学方法研究改性活性炭电极构成的电化学电容器性能.结果表明,由Ni(NO3)2热解产生的NiO有准电容效应,与活性炭原有的双电层电容构成了复合电容,因而改性炭的电容量有明显的提高,其质量比电容达到246.1 F/g,比原样炭的130.1 F/g提高了89.2%,表观体积比电容和面积比电容分别高达169.7 F/cm3和30.1 μF/cm2,均显著优于普通炭材料.  相似文献   

7.
为了提高活性炭电极在电吸附去离子实验中的除盐效果,实验采用化学原位合成法对活性炭进行负载聚吡咯改性,得到聚吡咯改性活性炭(PPy/AC)并制备电极,研究PPy/AC电极在硝酸钾溶液中的电吸附除盐性能。利用SEM、接触角测试仪、CV、EIS和GCD等多种表征手段分析改性前后活性炭电极的理化性质和电化学特性。结果表明,改性之后,活性炭电极的平均接触角从85.7°减小到60.45°,润湿性变好;比电容由89.66 F/g增加到283.5 F/g,提高了68.37%;电极的导电性变好,电阻变低,离子扩散属于半无限扩散过程;经过100次循环伏安测试后,比电容仅降低了20%,电极具有较好的循环稳定性和再生性。  相似文献   

8.
以商用活性炭为原料,采用20%硝酸液相氧化处理后,制备了硝酸改性活性炭。采用低温N_2吸附法表征了活性炭的孔结构性质,采用FTIR、Boehm滴定法进行了表面性质表征,测定、比较了商用活性炭和不同温度条件下的硝酸改性活性炭为原料所制备电极的循环伏安、恒定电流充放电、交流阻抗等电化学性能,探讨了硝酸改性活性炭电极的电容产生机理。实验表明,经硝酸氧化处理后,活性炭的比表面积和孔容略微增加,平均孔径稍增大,含氧官能团数量有所增加。由于氧化处理后活性炭材料赝电容的增加,相比商用活性炭电极的比电容量89.61F·g~(-1),硝酸改性活性炭电极比电容量增大到106.56 F·g~(-1),并表现出较好的功率特性、容量特性和较小的阻抗,同时具有大电流放电的特性。  相似文献   

9.
KOH活化法高比表面积竹质活性炭的制备与表征   总被引:7,自引:0,他引:7  
以竹屑为原料,研究了KOH活化法高比表面积活性炭的制备工艺.分别考察了浸渍比、活化温度、活化时间等工艺参数对产品吸附性能的影响,并提出了可能的活化机理.在所研究的实验条件下,最佳的制备工艺是浸渍比1.0,活化温度800℃,活化时间2h.所得到的活性炭产品的比表面积和孔容可达2996m2/g和1.64cm3/g.该产品附加值高,在吸附领域特别是在双电层电容器的电极材料领域有广阔的应用前景.  相似文献   

10.
以废弃中密度纤维板为原料,通过K2CO3活化制备活性炭双电层电容器电极。探讨炭化温度(500℃)、碱炭比(K2CO3与炭化物的不同质量比,即2.5、3、3.5和4)、活化温度(800℃)和活化时间(1 h)对电极电化学性能的影响,并对活性炭进行表面化学结构、孔隙性质和电化学性能进行表征。结果表明,经炭化和活化作用,所得活性炭均含有氮元素,含氮质量分数为0.93%~2.86%。在不同质量活化剂K2CO3的作用下,所得活性炭BET比表面积分别为569~1027 m2/g,不同比表面积活性炭作电极经测试得到不同质量比电容,所得比电容为147~223F/g。另外,当碱炭比为3.5时,所得活性炭电极的质量比电容和电化学性能最佳,归因于此条件下所制活性炭具有高比表面积和大的孔隙,并含有含氮官能团。  相似文献   

11.
以无机盐五水硝酸锆[Zr(NO_3)_4·5H_2O]为前驱体,采用溶胶-凝胶法制备二氧化锆(ZrO_2)材料,借助X射线衍射(XRD)、红外光谱(FT-IR)、热重(TG-DTG)、能谱(EDS)、扫描电镜(SEM)和N_2吸附-脱附等测试方法,研究中低温焙烧对ZrO_2材料微观结构和热稳定性的影响。结果表明,随着焙烧温度的不断升高,ZrO_2的晶型发生两次转化,先由无定型转化为四方相,进而变为单斜相,400℃焙烧的ZrO_2材料热稳定性良好,结构致密,四方相ZrO_2结晶度高达88.86%,晶粒尺寸为10.10nm,平均孔径为3.13nm,比表面积为24.74m~2/g。  相似文献   

12.
张继卫  常海洲  伊涵 《功能材料》2021,52(6):6001-6005,6012
通过溶胶凝胶法对KOH浸渍改性后的活性炭(AC)进行TiO2的负载,利用扫描电镜(SEM)、能谱分析(EDS)、X射线衍射(XRD)、比表面积及孔径测试(BET)、X射线光电子能谱(XPS)等对材料进行表征,并将复合材料做成涂层电极用于电吸附研究.结果表明,TiO2成功负载在AC上,晶型为锐钛矿型,并且表面存在着C-O...  相似文献   

13.
吸附是一种极具应用前景的汽油深度脱硫分离技术。采用硝酸氧化、焙烧、负载金属等方法对活性炭进行改性,利用静态实验研究了改性活性炭对模拟汽油中噻吩的吸附脱除性能。结果表明硝酸氧化可以增加活性炭表面酸性基团的量,提高脱硫性能;N2气氛下焙烧后吸附剂脱硫效果明显优于未处理活性炭;活性炭表面负载Fe、Zn、Cu、Ni金属离子改性中,Fe离子改性活性炭脱硫效果最好。根据上述实验结果,进行了活性炭复合改性实验,得出68%硝酸氧化后再进行Fe离子负载,吸附剂脱硫率最高,噻吩的脱硫率可达到85%。  相似文献   

14.
夏光华  赵晓东  廖润华 《功能材料》2013,44(7):1024-1028
在多孔陶粒表面覆盖磁性Fe3O4/活性炭复合涂层进行改性,以增强其吸附性能,对各种工艺参数如浸渍比、炭化温度、活化温度、活化时间、磁性粉体添加量进行了研究,结果表明,活性炭原料中KOH/葡萄糖浸渍比为4、炭化温度400℃、活化温度850℃,活化时间1h、磁性粉体添加量为10%为最佳,改性后陶粒的亚甲基蓝吸附去除率(88.1%)是改性前的3.15倍,效果显著。  相似文献   

15.
活性炭作为超级电容器电极材料,具有许多优点,但也存在能量密度低、比电容不足的缺点。介绍了双电层电容器和赝电容电容器的储能原理以及生物质活性炭的制备工艺,综述了近年来表面掺杂N、S、O、P和金属氧化物改性生物质活性炭电极材料在超级电容器中的应用,指出了存在的问题及未来研究方向。  相似文献   

16.
通过磷酸-二氧化碳活化法将毛竹废料制备成活性炭,再以HNO3、HCl、H2SO4为改性剂,对自制活性炭进行表面改性,并在CO2气氛中进行二次扩孔,制成以KOH为电解液的双电层电容器炭电极。采用低温N2吸附法和X射线光电子能谱仪对样品孔结构和表面性质进行表征,结果表明:经酸改性处理后的活性炭样品孔径分布总体差异不大,但比表面积和总孔容下降,活性炭表面性质发生较大变化。采用恒流充放电、循环伏安法和交流阻抗法考察了活性炭电极的电化学性能。结果表明,改性后活性炭电极比电容增大,其中以硝酸改性效果为最佳。酸改性后内阻均有所下降,说明改性后的活性炭亲水性提高,从而降低离子扩散阻力。  相似文献   

17.
以氧氯化锆和硅酸钠的盐溶液为原料,采用共沉淀法制备了硅-锆复合的新型除氟材料(Si-Zr),利用SEM、FTIR和XRD分析了其表面形态和内部结构特征,并研究了相关的制备参数对材料除氟性能的影响。结果表明,600℃高温焙烧条件下的新型Si-Zr表面孔隙结构发达,比表面积大,有利于材料对氟离子的吸附; 材料中 Zr与Si以Si—O—Zr复合氧化物的形态结合,其性质结构稳定,对氟离子吸附后不易脱附。在制备参数中,焙烧温度、硅与锆摩尔比和焙烧时间对材料除氟性能的影响较大。  相似文献   

18.
以酚醛树脂为炭前驱体,KOH作活化剂,通过调节炭化温度在相同活化条件下制备了具有不同孔隙结构的活性炭材料.N_2吸附测试表明随着炭化温度降低,活性炭材料比表面积先增大后减小,孔容则不断增大.其中,550℃炭化样品与KOH反应活性最佳,可制得比表面积为2983m~2/g,总孔容为1.58cm~3/g,中孔孔容达到0.59cm~3/g的活性炭材料.采用直流充放电法、交流阻抗法和循环伏安法测定以上述多孔炭为电极材料的双电层电容器的电化学性能,结果表明,PF550活性炭材料电容性能最佳,在有机电解液中100mA/g充放电时,比电容达到160F/g,电流密度增大50倍容量保持率达到82%,显示出良好的功率特性;活性炭材料中存在一定比例的中孔不仅可以改善电极材料的功率特性,而且可以提高微孔的利用率.  相似文献   

19.
活化剂用量对无烟煤基高比表面积活性炭电容特性的影响   总被引:17,自引:10,他引:17  
以云南小发路煤矿低灰无烟煤为原料,KOH为活化剂制取双电层电容器用高比表面积活性炭电极材料。考察了活化剂与无烟煤的配比对活性炭收率、孔结构及比电容的影响,初步探讨了以无烟煤基高比表面积活性炭作电极的模拟双电层电容器的充放电特性。研究结果表明:随着KOH/无烟煤(质量比:1-5)增加,所得活性炭的收率下降,比表面积、总孔容积和比电容则不断增加。控制适宜的活化工艺条件可制得双电极比电容达73.6F/g的无烟煤基高比表面积活性炭,以该活性炭作电极的模拟双电层电容器具有良好的充放电性能。  相似文献   

20.
以丝瓜络作为前驱体,KOH为活化剂,在不同温度下炭化、活化制备活性炭,并将其作为超级电容器电极材料。采用N2吸附及电化学测试对活性炭的孔结构和电化学性能进行了表征,研究了炭化温度、碱炭比对活性炭电极材料孔结构和电化学性能的影响。结果表明:丝瓜络经过一步炭化即可制备出电化学性能优异的炭材料,经过KOH活化后比电容明显增加,在碱炭比为2时制备活性炭的比表面积、总孔容分别达到1549m2/g和0.901cm3/g,比电容达到228F/g,是未活化炭化物比电容的2.5倍,是一种理想的电极材料。活性炭作为电极材料,其比表面积存在一个最佳值,孔的容积、大小和形状对电解质离子的储存、扩散有着重要作用,对电化学性能有很大影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号