首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
煤/煤焦—水蒸气的催化气化理论基础   总被引:2,自引:1,他引:1  
本文以文献为基础,阐述了以碱金属、碱土金属及复合化合物为催化剂的煤/煤焦-水蒸气催化气化机理及功力学模型,为深入开展这一方面的研究、开发提供了理论基础。  相似文献   

2.
为了深入系统的研究煤焦与CO2及水蒸气的气化反应特性,综述了国内外对煤气化的主要影响因素、煤焦与CO2及水蒸气气化反应动力学、煤的结构特性在气化过程中的变化及CO2气化与水蒸气气化反应活性对比等方面的研究进展,并进行了总结。  相似文献   

3.
煤焦水蒸气气化特性及动力学研究   总被引:12,自引:1,他引:12  
运用等温热重法,对三种不同的煤焦,在反应温度900℃~1200℃之间进行水蒸气气化实验。分别考察了常压下反应温度、水蒸气分压和煤种对反应的影响;并且对不同煤焦的反应进行动力学计算,求取动力学参数,研究发现,煤焦水蒸气的反应与煤焦—CO2的反应相比速率要快得多,并且随反应温度升高,反应速率急剧增大。  相似文献   

4.
煤焦与水蒸气及二氧化碳的气化反应动力学   总被引:7,自引:0,他引:7  
本文应用恒速升温热重法对6种中国煤焦与二氧化碳和水蒸气的气化反应进行研究。采用下面二个动力学方程来求算气化反应动力学参数。计算机处理实验数据结果表明n=1的相关系数及计算值与实验结果的一致性都比n≠1的好。 K_2CO_3用作催化剂能明显加速义马长焰煤焦与二氧化碳和水蒸气气化反应速率,可预测K_2CO_3对其他5种中国煤焦亦有较明显的催化气化能力。  相似文献   

5.
以K2CO3为催化剂,利用自行设计的加压固定床反应器进行了神木煤焦-水蒸气催化气化反应动力学研究,并采用n级速率方程和Langmuir-Hinshelwood速率方程考察了水蒸气分压的影响.系统压力为3.5 MPa,气化反应温度分别为600℃,650℃和700℃,其中600℃下水蒸气分压分别为1.24 MPa,1.83 MPa和2.88 MPa;650℃和700℃下的水蒸气分压分别为1.24 MPa,1.83 MPa和2.34 MPa.研究发现,随气化温度的提高和水蒸气分压的增加,煤焦的水蒸气气化反应活性明显提高.采用n级速率方程得到煤焦与水蒸气的反应级数为0.732,活化能为102.63 kJ/mol;采用L-H方程得到活化能为109.23 kJ/mol,其速率方程可以更精确地描述反应气体压力对气化反应的影响.  相似文献   

6.
基于小型流化床评价装置研究了内蒙古褐煤煤焦与水蒸气的流化气化反应特性,考察了温度、压力、水蒸气分压和氢气分压对碳转化率、反应速率和平均气体组分的影响。研究结果表明,随着反应温度升高,碳转化率和反应速率显著增加,由于高温对气化反应深度和变换反应平衡的影响,平均有效气组分大幅增加。提高系统压力会抑制流化气化反应的进行,碳转化率和反应速率降低,加压有利于CH_4生成,但对平均有效气组分的影响不明显。随着水蒸气分压的增加,碳转化率和反应速率大幅增加,但其促进了变换反应的平衡移动导致平均有效气组分降低。氢气的存在会与水分子竞争煤焦表面的活性位,抑制气化反应的进行,使得碳转化率和反应速率降低。采用Langmuir-Hinshelwood(L-H)模型拟合得到了H_2抑制作用下的煤焦水蒸气流化气化反应速率方程,试验值与模型拟合值吻合较好,并且计算得出宏观反应活化能为181.36 kJ/mol。  相似文献   

7.
为解决我国高灰熔融性煤的利用难题,采用等温热重法,研究了典型贵州高灰熔融性煤焦在不同气化温度及不同水蒸气含量下的气化特性,并采用混合反应模型对试验数据进行处理,求取动力学参数。结果表明,在不同水蒸气含量下,随着气化反应温度的升高,典型贵州煤焦的反应性提高,气化反应速率的峰值增大,气化反应时间缩短;气化剂中水蒸气含量越多,煤焦反应性越好,气化反应速率的峰值越大,但当水蒸气含量大于30%后差别不明显;典型贵州煤焦与水蒸气反应的反应级数为0.912 9~1.620 9,活化能为149.34~165.12 k J/mol。  相似文献   

8.
以孙家壕高铝煤为实验煤样,将煤样在800℃制成煤焦,采用热重分析仪(TGA)研究了钙添加剂对孙家壕煤焦Na2CO3催化水蒸气气化反应性的影响。结果表明:Ca(OH)2对孙家壕煤焦水蒸气气化具有催化作用,在对孙家壕煤焦进行800℃Ca(OH)2催化水蒸气气化时,Ca(OH)2的负载量在15%(质量分数,下同)时达到饱和;通过比较Na2CO3和Ca(OH)2对孙家壕煤焦800℃水蒸气气化的催化活性,发现Na2CO3的催化气化活性比Ca(OH)2的催化气化活性大,负载5%Na2CO3和10%Ca(OH)2的孙家壕焦的800℃水蒸气气化反应性相等;添加10%Ca(OH)2添加剂可以使负载10%Na2CO3的孙家壕煤焦在700℃...  相似文献   

9.
白永辉  朱文坚  左永飞  李凡 《煤化工》2013,41(1):13-15,18
简述了煤焦水蒸气与CO2共气化技术的优势和应用现状,综述了国内外该技术的最新理论研究进展,分析了其发展的技术瓶颈和亟待解决的原理性问题,并对该技术可能的应用前景及领域进行了展望。  相似文献   

10.
利用加压热分析仪,测定了义马煤焦的CO2气化反应性。结果表明:随温度的提高,义马煤焦的反应性和反应速度呈增加趋势,与前期研究常压下的情况一致;压力对气化反应的促进作用不明显,且温度对气化过程的影响大于压力;反应速率在初始阶段最大,随后逐渐减小。经过动力学计算表明:反应速率与温度的关系符合Arrhen ius定律;反应级数随温度增加而减小,近似于线性关系;煤焦活化能大约为60.02 kJ/mol。  相似文献   

11.
Catalytic steam gasification of fine coal char particles was carried out using a self-made laboratory reactor to determine the intrinsic kinetics and external diffusion under varying pressures (0.1-0.5 MPa) and superficial gas flow velocities (GF Vs) of 13.8- 68.8 cm· s^-1. In order to estimate the in-situ gas release rate at a low GFV, the transported effect of effluent gas on the temporal gasification rate pattern was simulated by the Fluent computation and verified experimentally. The external mass transfer coefficients(kmam) and the effectiveness factors were determined at lower GF Vs, based on the intrinsic gasification rate obtained at a high GFV of 55.0 cm·s^-1. The kmamwas found to be almost invariable in a wider carbon conversion of 0.2-0.7. The variations of kmam at a median carbon conversion with GFV, temperature and pressure were found to follow a modified Chilton-Colburn correlation:Sh=0.311Re^2.83Sc1/3(P/P0)^-2.07 (0.04相似文献   

12.
A study has been made of the gasification behaviour, in carbon dioxide and steam, of a number of coal chars doped with small amounts of alkali metal carbonates. For a given additive, the magnitude of the catalytic effect increased with the rank of the parent coal. A progressive loss in catalytic activity on thermal cycling during steam gasification was associated with reaction of the alkali salts with mineral matter in the chars. The kinetic data were consistent with catalytic mechanisms involving oxidation/reduction cycles on the char substrates.  相似文献   

13.
During the course of coal gasification, the rate per unit weight of remaining char often decreases as the coal conversion increases. The present study has tried to elucidate the reason why this rate retardation occurs. Possible reasons can be roughly divided into two categories; one due to the change of the mineral matter in char, and one related to the variation of carbon structure. Char samples at different conversion levels were prepared from raw and demineralized Wandoan coal. Their reactivities and other properties were examined, and their relationship was considered. The principal reason for the rate retardation in the present case was attributed to the loss of catalytic activity of mineral matter as the conversion increases.  相似文献   

14.
This study is intended to clarify the relationship among the reactivity of coal char with steam, structural change in residual carbon, and ash behavior. Steam gasification of various coal chars and demineralized chars was carried out in a fixed-bed reactor. After gasification, the reacted char was analyzed using laser raman spectroscope (LRS), and scanning electron microscope, energy dispersive X-ray spectroscope (SEM/EDX) mapping. Results of SEM images and EDX-mappings revealed that novel parallel analysis of cross correlation between EDX-mapping and LRS-mapping was found to be very effective for the comprehensive evaluation of ash behavior and carbonaceous structure. As the gasification reaction proceeds, the reactivity of the char was varied; existence of Si and Al seemed to suffocate the char reactivity.  相似文献   

15.
Based on results from a variety of experimental measurements, a detailed mechanism is postulated for the action of the inorganic catalyst in char gasification. In this mechanism, a catalyst such as potassium carbonate in contact with char undergoes a chemical and physical transformation to form a molten potassium oxide film that covers the char surface. This film serves as an oxygen transfer medium between the gaseous reactant (H2O or CO2) and the char. At the catalyst/char interface, an oxidation-reduction reaction occurs and the anions in the catalyst react with the oxidized char to form a phenolate-type functional group that subsequently splits out CO. The anions are replenished by reaction between the oxidizing gas (H2O or CO2) and the oxide at the gas/catalyst interface. Net transport of oxygen from gas to char occurs by diffusion of the species in the molten catalyst film.  相似文献   

16.
用非等温热重法考察了神华煤焦及其显微组分富集物焦的水蒸气气化反应,分析了升温速率、水蒸气分压改变对煤焦及其显微组分富集物焦气化反应性的影响。利用最大反应速率和半衰期两种方法评价了所选样品的气化反应性。结果表明:对神华煤而言,在相同的气化反应条件下,当升温速率和水蒸气分压发生改变时,其气化反应性顺序均为,镜质组富集物焦〉原煤焦〉惰质组富集物焦。  相似文献   

17.
Low melting binary and ternary eutectics of the alkali metal halides, carbonates and sulphates have been found to be more effective low temperature catalysts for the CO2 and steam gasification of graphite and coal chars than the pure salt components. The reduced melting points of the eutectic phase facilitate contact between the catalyst and the carbonaceous substrate.  相似文献   

18.
A Montana lignite was pretreated in either HCI—HF or ammonium acetate. The former treatment replaced cations associated with carboxyl groups by hydrogen, as well as removing essentially all mineral matter. The latter treatment replaced cations by ammonium ions but left the mineral matter intact. The pretreated lignites were then loaded with varying amounts of Ca and Mg, separately or jointly, by ion exchange. Reactivities of chars produced from these exchanged lignites, as well as the raw and pretreated lignites, were determined in air, CO2 and steam. Gasification of exchanged lignites was strongly catalysed by Ca; its activity was not affected by the presence of Mg on the char. At a comparable Ca loading, gasification rates of the 1273 K raw lignite char in the various atmospheres was higher than that of the acid treated 1273 K char but lower than that of the ammonium acetate treated 1273 K char. The former finding is attributed to chlorine retention in the lignite and char; the latter, to enhanced sulphur release during lignite pyrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号