共查询到20条相似文献,搜索用时 15 毫秒
1.
高光谱图像(HSI)分类是HSI处理中的重要预处理手段,其目标是对HSI数据中每个像素点进行类别标记,标记结果常用于识别、勘探等应用。针对HSI分类任务中存在的数据量大、数据维度高、已知样本量少等难点,提出一种基于图模型的半监督分类算法。该算法将HSI数据建立为图以实现降维,而后将分类问题归结为一个无约束的优化问题。由于在求解优化问题时涉及到矩阵求逆,数据规模大时计算复杂度会变高。为了避免大规模的矩阵求逆,采用拟牛顿法进行求解,通过对Hessian矩阵进行分解,对计算步长时涉及到的求逆操作进行近似,且该算法能够分布式实现。仿真实验表明,与现有算法相比,本算法在大规模且类别多的HSI分类任务下计算复杂度较低,能完成较高精度的分类。 相似文献
2.
《哈尔滨工程大学学报》2017,(7)
针对高光谱数据波段多,地物标签获取代价高,带标记的样本数量少,分类过程中容易引起Hudges现象。本文提出一种基于改进的局部全局一致性(learning with local and global consistency,LLGC)算法的半监督分类方法。通过边缘采样法(margin sampling,MS)选取最富含信息量的无标签样本,加入到训练集来扩充训练样本;用KNN算法计算相似度进一步优选无标签样本,去除噪声点和存在的野值点;使用改进的局部全局一致性算法对无标签样本集进行分类标记,得到各类别的分类结果。实验结果表明,本文方法在充分利用无标签样本的情况下,有效地提高了带有少量标签样本的高光谱图像的分类精度。 相似文献
3.
《哈尔滨工程大学学报》2016,(6)
高光谱数据维数高,有标签的样本数量少,给高光谱图像分类带来困难。本文针对传统三重训练(tri-training)算法在初始有标签样本数量较少的情况下分类器间差异性不足的问题提出了一种基于改进三重训练算法的半监督分类框架。该方法首先通过边缘采样策略(margin Sampling,MS)选取最富含信息量的无标签样本,然后在训练每个分类器之前通过差分进化算法(differential evolution,DE)利用所选取的无标签样本产生新的样本。这些新产生的样本将被标记并且加入训练样本集来帮助初始化分类器。实验结果表明,该方法不仅能够有效地利用无标签样本,而且在有标签数据很少的情况下能够有效地提高分类精度。 相似文献
4.
模糊支持向量机是模糊技术与支持向量机的有机结合,其关键步骤是确定模糊隶属度函数.现有方法大多利用距离这一相似性测度从不同角度构造隶属度函数,实现过程比较复杂.对于高光谱数据的光谱特性,用距离表征地物的光谱亮度差异较为合适,但天气、光照强度等因素对这种亮度影响很大.相比之下光谱间的角度受亮度的影响很小,作为相似性测度更为可靠.针对这种地物光谱角度特性,在模糊最小二乘支持向量机(FLS-SVM)中,用核光谱角余弦作为相似性测度来构造模糊隶属度函数,仿真结果表明能够有效地提高最小二乘支持向量机(LS-SVM)高光谱图像分类性能. 相似文献
5.
在过去数十年中,高光谱图像的研究与应用已经完成了从无到有、从差到优的跨越式发展.在对其研究的众多方面中,高光谱图像分类已经成为了一个最热的研究主题.研究表明空间光谱联合的分类方法可以取得比仅依赖光谱信息的逐像素分类方法更好的分类效果.本文将对众多的空间光谱联合分类方法进行归类和分析.首先介绍高光谱图像中相邻像素间的两类空间依赖性关系,因而可将现有的空谱联合分类方法分为依赖固定邻域和自适应邻域两类;此外,还可以依据是否同时利用两类依赖关系将现有方法进一步分为单依赖和双依赖两类.另外,还可以依据空谱信息融合的不同阶段将现有的分类方法划分为预处理方法、一体化方法及后处理方法三类.最后展示几种具有代表性的空间光谱联合分类方法在真实高光谱数据集上的分类结果. 相似文献
6.
为了解决在复杂的、数据量庞大的高光谱图像中汇集出参考价值较高的聚类组合问题,本文提出一种基于流形的K_Medoids改进算法并应用于高光谱图像的聚类实践中。该算法应用改进的Canopy算法进行初值选定,通过基于流形的测地距离所生成的像元距离矩阵来完成K_Medoids算法的聚类过程。该算法对传统聚类算法所具有的一些难以解决的弊端起到良好的抑制作用。利用AVIRIS图像对该算法进行验证,实验结果表明:与传统方法相比,该算法在类内距离、类间距离、Jaccard系数、Rand系数,以及聚类图像的直观对比五个评价标准下能够取得比传统方法更好的效果。 相似文献
7.
为了提高高光谱图像在有限训练样本下的分类性能,提出了一种基于双池化注意力机制的高光谱图像分类网络(DPAMN).首先,采用三维卷积提取高光谱图像的空间和光谱浅层信息.其次,为了增强网络的特征提取能力,在DPAMN中引入了一种双池化注意力机制.最后,在网络的深层引入三维卷积密集连接模块,该模块不仅能够充分提取高光谱图像的空间和光谱特征,同时还能提高特征的判别能力.实验结果表明,在Indian Pines、University of Pavia、Salinas以及Houston 2013数据集上分别取得95.45%、97.11%、95.30%以及93.71%的整体平均精度,与目前主流的已有先进方法相比,所提出的方法在4个数据集上均有较大提升,表明所提方法具有较强的泛化能力. 相似文献
8.
9.
根据核熵成分分析(KECA)的特点提出了基于凸面几何学概念的样本集选取方法和以特征空间光谱角为相似性度量的C-均值分类算法,并将其用于高光谱遥感图像分类。在HYDICE高光谱数据上的试验表明,本文提出的算法可以有效地提高分类精度。 相似文献
10.
该文应用蚊群算法和支持向量机实现多光谱遥感图像分类.首先提取出多光谱遥感图像的光谱特征、纹理特征和形状特征,然后利用蚁群优化算法从提取出的多维特征空间中选择最优的特征子集向量,最后将特征子集作为支持向量机分类器的输入量实现分类.实验结果显示,较传统的K均值方法文章给出的方法能够提高遥感图像的分类精度. 相似文献
11.
针对传统异常检测算法需要建立在一定的假设模型下,提出了一种新的高光谱图像异常检测算法。该算法无需假设背景模型,首先运用迭代误差分析方法对高光谱图像数据进行处理,得到高光谱图像数据的异常端元。然后以选取出的端元为参考,对高光谱数据进行相似度量,通过计算与参考端元的核光谱角余弦,找到与异常端元相似的光谱向量,得到异常检测结果。仿真实验结果表明,该算法能够准确的检测出异常目标,并且具有运算时间短、效率高的特点。 相似文献
12.
13.
为了提高高光谱遥感图像分类中空间信息的利用率,提出一种将空间邻域信息和光谱信息结合的组合核支持向量机(SVM)学习算法.用SVM进行预分类,从分类结果图提取各像素的空间邻域特征,与光谱特征结合构造组合核SVM进行分类,并再次提取空间邻域特征进行多次空-谱信息组合核SVM迭代分类,如此迭代10次,从中选择合适的结果作为最终输出.结果表明,该方法对传统支持向量机的分类精度提升幅度可达10%左右.同时,与其他组合核支持向量机相比,该算法用更少的训练样本获得了更高分类精度. 相似文献
14.
在植被类型丰富区域的地物精细分类中,如何有效地利用不同特征和合适的分类方法一直都是地物精细分类研究的重要问题.为了研究在植被类型丰富区域高光谱图像较大时地物精细分类性能,利用雄安新区马蹄湾村航空高光谱图像,研究一种多特征联合的高光谱图像分类方法.首先对高光谱图像进行最小噪声分离变换(NNF),同时提取对应纹理特征;然后... 相似文献
15.
高光谱图像包含丰富的地物信息,被广泛应用于许多场合。由于各分类模型具有不同的分类性能,如何有效利用各分类模型性能的差异性是实现融合分类的重要环节,为此提出了一种基于DS证据理论的多模型融合分类的高光谱图像分类方法。由于现有的分类模型从HSI数据的空间域和光谱域提取不同的特征,因此产生的预测结果不同。本融合方法采用多层感知机网络和随机森林网络进行融合分类实验,该网络借助各分类网络的提取特征的差异性,提高了分类结果的准确性。实验结果表明,当不同网络的分类精度存在一定差异时,DS融合模型能提高分类精度,同时优于线性平均加权融合模型。 相似文献
16.
智慧农业已成为当今世界现代农业发展的大趋势,其中低空无人机遥感图像分析是现代精准农业的重点研究方向,它通过对无人机拍摄的高光谱遥感图像进行学习,来指导无人机进行精准作业.然而,中小型农场在发展智慧农场的过程中存在设备资源不足的弊端,因此本文提出了一种基于卷积神经网络的轻量级高光谱遥感图像分类方法,旨在保证较高分类精度的... 相似文献
17.
结合APO算法的高光谱图像波段选择 总被引:3,自引:0,他引:3
提出了结合拟态物理学优化(APO)算法的高光谱图像波段选择方法.该方法中采用了类间可分性和波段组合的信息量两个主要性能指标的权重组合作为适应度函数.此外,在波段选择之前对高光谱图像进行了子空间划分,使得最优解中的波段间相关性较小,冗余度低.利用AVIRIS图像对提出的算法与经典算法中蚁群算法、遗传算法和粒子群算法进行实验,实验结果证明了本文算法较经典算法在所选波段性能和计算耗时方面都获得令人满意的效果. 相似文献
18.
传统的高瀑布图像分类模型只考虑光谱特征信息,忽略了图像空间结构信息在分类中的重要作用。为提高高光谱遥感图像的分类精度,提出一种同时利用高瀑布图像的光谱信息和空间信息的深度卷积神经网络分类模型。通过对低层特征自动分层地学习来提取更加抽象的高层特征,提取的特征具有平移、缩放及其他形式扭曲等高度不变性;基于学习到的深度特征,用logistic回归分类器进行分类训练。高光谱数据实验结果表明,深度卷积神经网络模型能够提高高光谱遥感图像的分类精度,从而验证了深度卷积神经网络进行高瀑布图像分类的可行性和有效性。 相似文献
19.
《哈尔滨工程大学学报》2017,(8)
针对高光谱数据维数高、有标签样本少等特点,采用半监督分类利用未标记样本信息提高高光谱图像分类精度。主动学习研究训练样本的选择方法,以少量的标记样本得到尽可能好的泛化能力。本文提出了一种结合主动学习算法的半监督分类算法。该方法使用支持向量机作为基本的学习模型,通过主动学习方法选取训练样本,以伪标记的形式加入到分类器的训练中,结合验证分类器迭代选出置信度较高的伪标记样本,通过差分进化算法交叉变异伪标记样本扩充标记样本群。在两个数据集上进行仿真实验,与传统分类算法相比,所提算法的总体分类精度分别提高了1.97%、0.49%,表明该算法能够有效地提升主动学习样本选择的效率,在有限带标记样本情况下提高了分类器精度。 相似文献
20.
通过对投影非负矩阵分解(PNMF)增加近邻保留假设,提出了一种新的高光谱图像线性特征提取方法———近邻保留投影非负矩阵分解(NPPNMF)。NPPNMF保留了高光谱数据在低维特征空间中的局部几何结构,克服了PNMF基于Euclidean的缺点。根据在构造k近邻图时是否使用训练样本的类标签信息决定了NPPNMF既可以是无监督的特征提取方法,也可以是有监督的特征提取方法,从而提高了PNMF算法的鉴别力。理论证明和高光谱图像数据的分类结果表明了该方法的有效性及应用潜力。 相似文献