首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用沉淀聚合方法以甲基三甲氧基硅烷(MTMS)为原料,制备微米级聚甲基硅氧烷微球,其粒径呈单分散性分布。研究了反应体系中油水质量比(MTMS与去离子水质量比)、反应温度、搅拌频率、催化溶液pH等对聚甲基硅氧烷微球粒径及其分布的影响。结果表明:随着油水质量比和搅拌频率的提高,聚甲基硅氧烷微球粒径增加,粒径分布变宽;而反应温度的提高和催化溶液pH的增加使聚甲基硅氧烷微球粒径变小,粒径分布变窄。  相似文献   

2.
以壳聚糖为单体,戊二醛为交联剂,采用反相悬浮-化学交联法制备了不同条件下的壳聚糖微球。实验结果表明:随着冰乙酸浓度、壳聚糖浓度和乳化剂含量的增大,微球粒径先减小后增大;而随着搅拌速度的增大,微球粒径呈逐渐减小的趋势,控制成球的反应条件可以制备出不同粒径的壳聚糖微球,并在此基础上探讨了微球的生长机理。  相似文献   

3.
以离子液体1-烯丙基-3-甲基咪唑氯盐([Amim]Cl)为溶剂,以甘蔗渣纤维素为原料,采用反相悬浮法制备再生纤维素微球,经FT-IR、SEM、XRD、光学显微镜分析再生纤维素微球,通过激光粒度测试,以甘蔗渣再生纤维素微球粒径40~200μm为考察指标,实验表明:在80℃时,转速为600r/min,以4.0%纤维素溶液,6mL司盘80,200mL液体石蜡,制得乳白色、形貌为较规则球形的再生纤维素微球,40~200μm的粒径占全部粒径的64.8%。制备过程无化学反应,纤维素由晶型Ⅰ变为晶型Ⅱ,结晶度由54.58%降到35.21%。  相似文献   

4.
以甲基丙烯酸甲酯(MMA)为单体、过硫酸钾为引发剂、十二烷基硫酸钠为乳化剂,采用分散乳液聚合法制备分散聚甲基丙烯酸甲酯(PMMA)微球,并自组装得到有序的空间结构。用粒度仪和扫描电子显微镜(SEM)分析PMMA微球的粒径尺寸和形貌,采用响应面分析法结合单因素趋势变化研究单体、引发剂、乳化剂、搅拌速度以及温度对PMMA微球粒径和分布的影响。结果表明,通过控制实验条件制备出平均粒径为115nm的PMMA微球,其分布集中,粒径随着引发剂量、单体量、温度的增加而增加,但是粒径大小却随着搅拌速度、乳化剂的增加而减小。  相似文献   

5.
通过乳液聚合法制备了负载阿莫西林的纳米羟基磷灰石/聚氨酯(n-HA/PU)载药微球,通过正交设计实验对其制备工艺进行了优化,采用红外光谱、热重分析、扫描电镜等分析了微球的结构和性能,对其体外药物缓释过程进行探讨。研究结果表明,复合微球粒径大小与固含量、聚乙烯吡咯烷酮(PVP)含量、搅拌速度等有关,所制备的微球平均粒径为0.8~1.2mm;载药微球的优化制备工艺条件为:原料配比-NCO∶-OH=2∶1,预聚时间180min,预聚温度80℃,nHA含量3%,固含量7%,搅拌速度600r/min,PVP用量3%,所制备微球的载药量为6.58%,包封率为86.86%。体外缓释结果表明,载药微球的释药行为符合Higuchi动力学,半衰期(t1/2)为22.29h,具有良好的药物缓释作用。  相似文献   

6.
采用种子溶胀法合成1~10μm单分散聚苯乙烯微球,研究单体与种子微球的不同质量比、聚合温度、分散介质中乙醇浓度以及搅拌速度对聚苯乙烯微球粒径和粒径分布的影响。结果表明,随着单体与种子质量比的增大和聚合温度的升高,微球粒径越大,粒径分布变宽;合成聚苯乙烯微球的适宜条件是单体与种子的质量比范围为0.5~3.5,聚合温度为70~75℃,搅拌速率为150~350 r/min,乙醇在分散介质中的质量分数为10%~15%;合成的粒径分别为6、7、8μm的聚苯乙烯微球的球形度大于96%,粒径相对标准偏差小于5%。  相似文献   

7.
乳液法制备中间相炭微球的研究   总被引:7,自引:2,他引:7  
为制备高性能中间相炭微球(MesocarbonMicrobeads,简称MCMB),选用三种不同中间相含量的石油渣油沥青为原料(中间相体积含量:PP185%,PP290%,PP3100%),采用乳液法制备中间相沥青微球(MesophasePitchMi crobeads,简称MPMB),再经预氧化和炭化处理,制得圆整度好、收率高、球径分布窄的中间相炭微球。利用扫描电子显微镜(SEM)考察了MPMB的微观形貌,同时还利用激光粒度分析仪测定了MPMB的粒度分布。研究了乳液法制备MPMB的影响因素,研究结果表明:(1)耐高温硅油适宜作为乳液法的导热分散介质;(2)不同中间相含量的沥青制备微球时有其适宜的处理温度和时间(PP1:320℃,30min;PP2:330℃,30min;PP3:355℃,30min),且制得的微球收率(收率:PP1相似文献   

8.
研究了各种反应条件对钛纤维素合成的影响。进行了钛醋酸纤维素合成,得到了不同含钛量的钛醋酸纤维素。X—射线衍射显示,钛醋酸纤维素为无定形固体。热重分析表明,钛醋酸纤维素的热稳定性比醋酸纤维素有所提高。用甘油—正丙醇为添加剂,丙酮为溶剂,制得了在20kg/cm~2压力下,脱盐率达96—97%,水通量达1.0—1.8ml/cm~2·h 的钛醋酸纤维素反渗透膜。与醋酸纤维素膜相比较,钛醋酸纤维素膜可在较高温度下使用,具有一定的耐热性。  相似文献   

9.
聚乙烯基硅氧烷功能微球的制备研究   总被引:2,自引:0,他引:2  
采用水解-缩聚两步法以乙烯基三甲氧基硅烷(VTMS)为原料,制备超细聚乙烯基硅氧烷微球,粒径为1~6μm,粒径分布较窄;就反应体系氨水浓度、油水比、反应温度等条件对微球形态、粒径大小及其分布的影响进行了研究。结果表明较优的反应条件为:氨水浓度在0.01%~0.16%之间,投料油水比(VTMS与去离子水的体积比)应小于1∶3;随着油水比的增大和反应体系中氨水浓度的降低,微球的粒径增大,分布变宽。  相似文献   

10.
采用偶氮二异丁基盐酸脒(AMPMDHC)为引发剂,用无皂乳液聚合方法制备单分散性PMMA微球,合成粒径为500nm的单分散PMMA微球的聚合条件是:MMA/H2O=20:100(m1),温度为70℃,AMPMDHC用量为0.06g,反应时间为1.5h.实验结果表明:(1)引发剂用量越多,PMMA微球粒径越小,但对微球粒径分布影响较小;(2)反应温度升高,微球粒径增大,单分散性降低;(3)微球的粒径随着水的用量增大而降低,当MMA/H2O小于1/6时,微球粒径趋于180nm.  相似文献   

11.
为了获得一种具有孔道和微孔腔结构的淀粉基微球。首先使用丙烯酸的钠盐与环氧氯丙烷反应制备活性醚化剂,活性醚化剂与可溶性淀粉进行接枝反应,采用悬浮自由基聚合法制备了具有孔道和微孔腔结构的可实现双相选择吸附的淀粉基微球。讨论了聚合反应过程中反应时间、搅拌速度以及油水体积比对微球平均粒径的影响。研究发现,聚合反应过程中,最佳反应时间为2.5h,最佳搅拌速度为600r/min,最佳油水体积比为5∶1,在最佳反应条件下获得淀粉基微球的平均粒径为35μm左右。  相似文献   

12.
王晓东  霍书娟  李凡  高建平 《功能材料》2006,37(11):1825-1827
通过醋酸锌在一缩二乙二醇中热醇解反应制备了纳米晶ZnO微球,探讨了在醋酸锌热醇解法制备过程中升温速率对醇解反应温度和ZnO微球粒径分布的影响.在此基础上采用种子法制备了ZnO微球,考察了种子液加入量和反应时间对ZnO微球粒径分布的影响,并尝试使用SJN-30硅溶胶和SiO2微球乳液为种子液制备核-壳结构ZnO复合微球.  相似文献   

13.
采用分散聚合法,在Fe3O4磁流体存在下,通过PVA分子单体共聚制备磁性高分子微球.用透射电镜和X射线对磁流体的形貌、粒径进行表征和衍射分析,同时借助于显微拍照和红外光谱,对磁性微球的微观形貌和化学成分进行了研究.通过对比磁性微球的磁响应性及粒径,研究了反应温度、搅拌速度、聚乙烯醇用量、盐酸用量等操作因素对磁性微球性质的影响.结果表明,在70 ℃操作温度、750 r/min的搅拌速度,5ml 9%PVA和0.5 ml 37%盐酸条件下能制备出粒径在8~44 μm之间、具有良好磁响应性、表面富含羟基和羧基等官能团的磁性聚乙烯醇微球.  相似文献   

14.
以醋酸乙烯酯(VAc)为单体,二乙烯基苯(DVB)为交联剂,通过悬浮聚合制备了一系列不同粒径(0.1~0.5mm)的交联聚醋酸乙烯微球,经过醇解,制得了交联聚乙烯醇微球。研究发现,搅拌速度对微球粒径大小影响较大,重点考察了搅拌速度对平均粒径和粒径分布的影响,实验结果表明,随着转速的逐步提升,微球的平均粒径明显减小,粒径分布变窄。通过在聚合过程中引入适当的致孔剂,获得高比表面积的微球,最高可达494.1m2/g,探讨了致孔剂种类和交联剂用量对比表面积的影响。结果表明,当增加交联剂的用量或者加入与共聚物溶度参数相近的致孔剂时,微球的比表面积显著增大。  相似文献   

15.
以四乙氧基硅烷(TEOS)为原料, N,N-二甲基甲酰氨(DMF)为模板, 采用二次催化的溶胶-凝胶法制得微米级多孔性硅胶微球. 考察了一次催化水解缩聚过程中水量、乙醇量, 二次催化反应过程中电解质浓度、搅拌速度对微球粒径的影响, 并采用扫描电子显微镜(SEM)、激光粒度分布仪、比表面及孔径分析仪、显微镜-图像颗粒分析系统进行表征. 结果表明, 制得硅胶微球球形规则且无团聚现象, 平均粒径(D50)为8.9μm, 粒径呈典型高斯分布, 比表面积546.67m2/g, 孔体积0.7142m3/g, 孔径主要分布在2~8nm之间, 分布范围窄; 硅胶微球粒径大小随一次催化过程中水量、乙醇量及二次催化过程中电解质浓度增加而增大, 随乳状液形成过程中搅拌速度加快而减小.  相似文献   

16.
以醋酸乙烯酯(VAc)为单体,二乙烯基苯(DVB)为交联剂,通过悬浮聚合制备了一系列不同粒径(0.1~0.5mm)的交联聚醋酸乙烯微球,经过醇解,制得了交联聚乙烯醇微球。研究发现,搅拌速度对微球粒径大小影响较大,重点考察了搅拌速度对平均粒径和粒径分布的影响,实验结果表明,随着转速的逐步提升,微球的平均粒径明显减小,粒径分布变窄。通过在聚合过程中引入适当的致孔剂,获得高比表面积的微球,最高可达494.1m2/g,探讨了致孔剂种类和交联剂用量对比表面积的影响。结果表明,当增加交联剂的用量或者加入与共聚物溶度参数相近的致孔剂时,微球的比表面积显著增大。  相似文献   

17.
磁性壳聚糖复合微球的制备和性能研究   总被引:14,自引:0,他引:14  
本文采用乳化交联法制备了可附载放射性核素的磁靶向药物载体-磁性壳聚糖复合微球.考察了壳聚糖浓度、Fe3O4/壳聚糖质量比及搅拌速度等因素对磁性壳聚糖微球粒径、粒径分布以及形貌等对复合过程的影响,确定了制备高磁响应性的磁性壳聚糖的最佳条件,并借助不同手段对磁性壳聚糖的粒径、粒径分布、形貌及磁性能进行了初步表征.  相似文献   

18.
温度及搅拌速度对纳米氢氧化镍性能的影响   总被引:1,自引:0,他引:1  
采用化学沉淀法制备出片状和棒状混合的纳米β-Ni(OH)_2,将纳米粉体以 8%比例掺入到球镍中制成复合电极,研究了反应温度和搅拌速度对纳米粉体结构、形貌及其复合电极电化学性能的影响,结果表明,反应温度升高,纳米颗粒粒径增大;搅拌速度提高,粒径减小;复合电极的放电比容量随反应温度和搅拌速度提高先增大后减小,当反应温度为 50℃、搅拌速度为 600 r/min时,相应的复合电极放电比容量最大,达到了 263.3 mAh/g,比纯球镍电极放电比容量(239.4 mAh/g)提高了约 10%。研究还显示,复合电极的放电比容量与其粉体的压实密度有直接对应关系,其放电比容量和放电平台均高于纯球镍电极。  相似文献   

19.
采用开环聚合的方法制备了Pluronic/寡聚己内酯嵌段共聚物,该共聚物通过酰氯化反应得到了端基结构为丙烯双键的大分子单体;最后以氧化还原引发剂、采用反相悬浮聚合法制备了聚(甲基丙烯酸-co-酰氯化大单体)共聚型微凝胶;考察了加速剂用量、搅拌速度、分散剂用量及油水两相比例等因素对成球性能及粒径的影响.研究结果表明:采用反相悬浮聚合法可以制备出球形良好的微凝胶,最适宜的条件为:加速剂用量为1.0μL/mL,分散剂用量7%(在分散相中的质量含量),搅拌速度500r/min,油水两相比例=10/1(W/W),研究表明所制备微凝胶具有良好的pH和温度双重敏感性.  相似文献   

20.
以苯乙烯、二乙烯苯为单体,引入混合溶剂作为致孔剂,采用悬浮聚合的方法制备了多孔交联聚苯乙烯微球,并通过有机萃取等方法带出致孔剂,形成永久性大孔.分析了搅拌速度、分散剂用量、致孔剂等因素对微球粒径分布和孔比表面积的影响,研究了不同工艺条件下的微球形态.结果表明,转速在180r/min左右,分散剂质量分数在0.15%左右时,可以制得粒径范围为0.2~0.8mm的聚苯乙烯微球,且微球具有良好的粒径分布.采用石蜡/甲苯、石蜡/乙酸乙酯为致孔剂时,可以形成纳米级小孔,且当石蜡/甲苯用量为86%时,孔比表面积可达到33.07m2/g,并随着交联剂用量的增加而增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号