首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了碳纳米管、石墨、炭黑及其混合材料作为导电剂与纸纤维复合制成导电纸的电磁屏蔽的效能。采用普通造纸法成型导电纸。使用扫描电子显微镜、四探针电阻仪、矢量网络分析仪对其进行表征,其中炭黑导电纸的电磁屏蔽效能最好,屏蔽效能为-28~-35dB。掺杂碳纳米管对石墨的导电性和屏蔽性能改变巨大。在2500MHz以上碳纳米管导电纸屏蔽效能接近并超越炭黑导电纸,表明碳纳米管在高频率情况下表现出更强的屏蔽能力。  相似文献   

2.
以纸纤维作为载体,碳纳米管(CNTs)为导电剂,采用普通造纸的工艺制成碳纳米管导电纸。通过对碳纳米管的石墨化处理改性导电纸性能,采用X射线衍射、热重分析、扫描电子显微镜、四探针电阻仪、矢量网络分析仪等对其表征。研究表明,当纸纤维和碳纳米管加载比为1∶1时,碳纳米管经石墨化改性后,导电纸电导率和导热系数大幅增大,在175~2 700 MHz频段,电磁屏蔽效能提高到-28~-35dB,对比未石墨化碳纳米管导电纸屏蔽效能平均提高10dB。  相似文献   

3.
以晶须状多壁碳纳米管为导电剂,纸纤维为基体,采用高速剪切分散工艺将碳纳米管均匀分散在纸纤维基体中制成碳纳米管纸纤维浆料,经真空抽滤制备碳纳米管导电纸。检测了碳纳米管导电纸的电磁屏蔽性能及电化学性能。研究结果显示,碳纳米管导电纸在300~1500MHz频段,屏蔽效能SE达19~22dB,碳纳米导电纸替代石墨作为锌锰电池的集流体时,锌锰电池的放电能力提高62%。  相似文献   

4.
研究了碳纳米管高频电磁波的屏蔽性能.碳纳米管经微波处理后在丙酮中经高速剪切分散,再加入到硅橡胶中经超声和搅拌分散制成试样.采用扫描电镜(SEM)观测碳纳米管在基体中的分散状况,采用AV3620型矢量网络分析仪检测电磁屏蔽性能.研究显示,随着碳纳米管加载量的增加,试样的导电性能和电磁屏蔽性能均得到 改善.碳纳米管加载量达到12%(质量分数,下同)时,试样的表面电阻率下降9个数量级,减小到103Ω,电磁屏蔽性能大幅提高.在1~6GHz频率范围内,屏蔽效能达到-30~-42dB.  相似文献   

5.
研究了以碳纳米管(CNTs)作为导电剂纤维素纤维为基体的复合纸的制备工艺和电磁屏蔽性能。通过使用球磨、超声、剪切和磁力搅拌等多种分散工艺制得CNTs/纤维素纤维复合纸,研究了不同分散工艺对复合纸性能的影响,并确定最佳制备工艺。采用扫描电镜(SEM)、透射电镜(TEM)和X-射线衍射(XRD)对CNTs检测检测。采用四探针电阻仪、矢量网络分析仪对CNTs/纤维素纤维复合纸进行性能检测。研究结果表明,球磨与剪切复合工艺制得的CNTs/纤维素纤维复合纸电导率达到47.35S/m,电磁屏蔽效能最高,为18~22.5dB,具有较好的性能。  相似文献   

6.
研究氧化铝陶瓷的摩擦磨损特性随不同稀土氧化物掺杂的变化规律。方法制备不同稀土氧化物掺杂的氧化铝陶瓷样品,采用球-盘磨损方法进行摩擦磨损实验。分析掺杂后氧化铝陶瓷磨损前后的形貌、物相组成及元素组成,测试掺杂后氧化铝陶瓷相对密度和显微硬度。结果表明,掺杂后氧化铝陶瓷主要由α-Al_2O_3相组成,Y_2O_3和CeO_2掺量的逐渐增加有相应复合氧化物次晶相形成。不同稀土氧化物及添加量对氧化铝陶瓷的致密化和力学性能出现不同的影响,就晶粒尺寸而言,3种稀土氧化物掺量为0.5%时,晶粒最细;就致密化而言,添加Y_2O_3和CeO_2的陶瓷最优掺量为0.5%,添加La_2O_3的陶瓷最优掺量为1.5%;就硬度而言,添加Y_2O_3和CeO_2的氧化铝陶瓷最优掺量为1.5%,添加La_2O_3的氧化铝陶瓷最优掺量为0.5%。在干摩擦条件下,3种稀土氧化物掺杂后的试样磨损体积都在添加量为0.5%时达到最小值,氧化铝陶瓷磨损失重随着添加量的增加而变大。掺量为0.5%时,3种稀土氧化物掺杂的陶瓷均呈现较好的耐磨性能,其磨损机制以磨粒磨损为主。  相似文献   

7.
以石墨化处理的碳纳米管为导电填料、纤维素纤维为基体,用真空抽滤法制备碳纳米管-纤维素纤维复合材料,用扫描电子显微镜、四探针电阻仪、矢量网络分析仪等手段对其进行了表征,研究了碳纳米管含量对碳纳米管-纤维素复合材料电磁屏蔽性能的影响。结果表明,样品的形状和电阻可控,具有良好的柔韧性、导电性能和电磁屏蔽性能。碳纳米管吸附于纤维上,构成了良好的导电网络。在碳纳米管加载量由10%提高到71%的过程中,碳纳米管复合纸的电导率和屏蔽性能明显提高,电导率由9.92 S/m提高为216.3 S/m,在175 MHz-1600 MHz频段屏蔽效能由15d B提高为45d B。  相似文献   

8.
石墨烯/聚苯胺复合材料的电磁屏蔽性能   总被引:2,自引:0,他引:2       下载免费PDF全文
采用直流电弧放电法制备高结晶性石墨烯, 利用乙醇助溶分散法得到石墨烯/聚苯胺电磁屏蔽复合材料, 研究不同掺杂比例的石墨烯/聚苯胺复合材料的电磁屏蔽性能。拉曼光谱分析表明: 由于石墨烯与聚苯胺之间的相互作用, 复合材料中聚苯胺特征峰比纯聚苯胺特征峰稍弱或向低频方向移动。复合物的电导率随石墨烯掺杂量的增加而增大, 当掺杂质量分数为25%时, 其电导率达到19.4 S/cm, 接近纯石墨烯电导率(20.1 S/cm)。频率为2~18 GHz时, 复合材料的电磁屏蔽效能随着石墨烯掺杂量和频率的增大而增强; 当石墨烯掺杂质量分数为25%时, 总屏蔽效能在2~18 GHz范围内由19.8 dB增至34.2 dB, 增加了约42%, 其中吸收部分占总屏蔽效能的比例为66%~81%, 这表明石墨烯/聚苯胺复合材料的电磁屏蔽性质是以电磁波吸收为主; 同时也说明了拥有特殊结构与特性的石墨烯是一种较好的聚苯胺填料, 在微波屏蔽与微波吸收领域将会有广阔的应用前景。  相似文献   

9.
采用静电纺丝技术制备了聚丙烯腈/多壁碳纳米管(PAN/MWNTs)复合纳米纤维。利用红外光谱和扫描电镜分别对纳米纤维结构和形貌进行了表征分析,并用高阻仪和矢量网络分析仪分别对PAN/MWNTs纳米纤维的导电性能及电磁屏蔽性能进行了测试。结果表明,随着MWNTs含量的增加,纤维直径减小,纤维的导电性能增强;纳米纤维膜在低频段均表现良好的电磁屏蔽效果,在1~15MHz频率范围内,当碳纳米管的含量达到10%以上时,屏蔽率达到90%以上。  相似文献   

10.
PANI-HCl/PAN电磁屏蔽纳米纤维膜的制备与表征   总被引:1,自引:0,他引:1  
用化学方法合成盐酸掺杂的导电聚苯胺,然后以静电纺丝技术制备PANI-HCl/PAN纳米柔性电磁屏蔽材料。利用红外光谱和扫描电镜分别对纳米纤维结构和形貌进行表征分析,并用电子万能试验机和矢量网络分析仪分别对导电聚苯胺薄膜的力学性能及屏蔽特性进行了测试和分析。结果表明,随着PANI-HCl含量的增加,纺丝溶液的电导率增加,纳米纤维直径减少,力学性能降低;PANI-HCl/PAN纳米薄膜的电磁屏蔽性能随着薄膜厚度的增加,电磁屏蔽性能提高,当薄膜厚度为91.04μm时,薄膜的电磁屏蔽效能达到20.38dB;同时,纳米纤维膜在低频段均表现良好的电磁屏蔽效果,在1~9MHz频率范围内,当聚苯胺的含量达到13%时,屏蔽率达到90%以上。  相似文献   

11.
为提高碳纳米纸(BP)力学性能,将微纤化纤维素(MFC)与多壁碳纳米管(MWCNT)混合,采用真空抽滤的方法制备MFC/BP。详细研究了MFC/BP的微观形貌、力学性能、电学性能、电磁屏蔽效能。研究表明,MFC均匀分散在碳纳米管中,形成了纤维骨架,碳纳米管相互穿插缠绕分布在纤维骨架周围形成网状结构。随着MFC含量的增加,MFC/BP的力学性能明显提高。当MFC与MWCNT质量比为1/1时,碳纳米纸的拉伸强度为11.76 MPa,比纯碳纳米纸提升了979%;在8.2~12.4 GHz频段内,碳纳米纸(厚度约55μm)的电磁屏蔽效能为24~30 dB。  相似文献   

12.
分别研究了用镀银玻璃微珠,炭纤维和镀银玻璃微珠/炭纤维复合填料填充的硅橡胶的电磁屏蔽效能。结果表明,在2.6 GHz~3.95 GHz频段内,镀银玻璃微珠填充量越大,导电硅橡胶的电磁屏蔽效能越高,镀银玻璃微珠填充量为180份时,样品的屏蔽效能的峰值为-115.2 dB。添加少量炭纤维能够提高镀银玻璃微珠/炭纤维复合填料填充橡胶的电磁屏蔽性能,当炭纤维添加量增加到20份时,镀银玻璃微珠/炭纤维复合填料填充硅橡胶(镀银玻璃微珠填充量120份)的电磁屏蔽效能峰值达到-82.0 dB,高于填充量为150份的单纯镀银玻璃微珠填料样品的电磁屏蔽效能,并且能够提高导电硅橡胶的力学性能并降低成本。  相似文献   

13.
以碳纳米管(Multi-walled carbon nanotubes)为导电剂,协同以碳纳米管和纸纤维复合成的CNTs导电纸为集流体,对石墨负极进行电化学改性。石墨化处理碳纳米管作为负极的添加相,采用XRD、SEM和TGA对其分析。结果表明,对比单纯的石墨/铜箔负极,掺杂0.8%(质量分数)石墨化碳纳米管的石墨/铜箔负极,电池比容量由304mAh/g变为308mAh/g,相差不大,但循环效率由86%升至92%;使用CNTs导电纸做集流体时,掺杂0.8%(质量分数)石墨化碳纳米管的石墨/CNTs导电纸负极,比容量由308mAh/g升至401mAh/g,提高30%,循环效率由92%升至95%,提高3%。说明碳纳米管协同CNTs导电纸对石墨负极具有积极的改性意义。  相似文献   

14.
杨博  郭磊  赵芳霞  张振忠 《材料导报》2011,25(20):74-76,79
针对低频频段(<1.5GHz)的电磁屏蔽涂层,采用快速混合法制备出导电聚苯胺纳米线,使用透射电镜(TEM)对其形貌和尺度进行表征,研究了搅拌方式对聚苯胺/聚氨酯涂层的导电性能和电磁屏蔽性能的影响。研究表明,由于磁场的作用,采用电磁搅拌法可以缩短聚苯胺聚合反应时间,合成均一的导电聚苯胺纳米线,其渗滤阈值为33.3%,含量为33.3%的聚苯胺纳米线的聚苯胺/聚氨酯涂层的电磁屏蔽性能为32.2dB,优于含量为45%的机械搅拌法制备的聚苯胺粉体,这可能是由于线性结构的导电聚苯胺在基体中能够较容易形成三维导电网络结构所致。  相似文献   

15.
通过熔融共混、流延成膜法制备了多壁碳纳米管/聚乙烯醇(MWCNTs/PVA)复合材料,并研究了碳纤维作为增强体的作用。扫描电子显微镜、傅里叶变换红外光谱、热重分析表明:MWCNTs在PVA基体中均匀分散且形成了良好的空间导电网络;MWCNTs的加入会使吸收峰转移并与PVA发生键合反应;MWCNTs/PVA复合材料具有优异的热稳定性,热分解温度低于105℃时只有少量水分蒸发。导电性和电磁屏蔽测试表明,MWCNTs/PVA复合材料电磁屏蔽性能随其导电性的增强而提高,MWCNTs质量分数为1.2%的复合材料样品,在干扰电磁波频率为1~18GHz频段上具有良好的屏蔽性能,当干扰电磁波频率为13.3GHz时,其屏蔽效能为36.7dB。碳纤维可以增强MWCNTs/PVA复合材料的屏蔽性能,MWCNTs质量分数为0.6%的碳纤维增强MWCNTs/PVA复合材料样品,在干扰电磁波频率为1~18GHz频段时,其电磁屏蔽效能大于40dB。  相似文献   

16.
以纳米石墨微片作为导电填料,水泥作为基体,制备高导电性复合材料,研究其电磁屏蔽等性能.探讨纳米石墨微片、含水量、龄期对复合材料的导电性及电磁屏蔽效能的影响.结果表明,质量分数为15%的纳米石墨微片制得的复合材料的性能为最佳,其体积电阻率为22.3Ω·cm,电磁屏蔽效能达到22.60dB(1.5GHz).  相似文献   

17.
目的 开发具有优异屏蔽效率、轻质且热稳定性良好的电磁屏蔽材料。方法 以聚酰亚胺(PI)为聚合物基体,聚吡咯(PPy)为添加相,采用静电纺丝-低温原位聚合技术制备PPy/PI电磁屏蔽复合膜。通过在薄膜内部的多孔结构中构建致密的导电网络,赋予复合膜优异的导电性和高效的电磁屏蔽效能。结果 在聚合PPy浓度为0.1 mol/L时,复合膜的电导率和电磁屏蔽效能分别为2.23 S/cm和26.04 dB,且其单位厚度电磁屏蔽效能可达到110.81 dB/mm,展现出优异的电磁屏蔽性能。结论 PPy/PI复合纤维膜表现出良好的力学性能(拉伸强度为11.73 MPa)、优异的热稳定性(>400 ℃)和力学传感性能,具备在恶劣环境下广泛应用的潜力。  相似文献   

18.
张小辉康青  徐守彬 《功能材料》2007,38(A08):2978-2980
实验研究了纤维体积掺量相同情况下,4种不同纤维长度的钢纤维混凝土电磁屏蔽性能,并对其屏蔽规律进行了分析、比较。探讨了纤维长度对钢纤维混凝土电磁屏蔽性能的影响机理。当纤维体积掺量为2A%,纤维长度为18或12mm时,钢纤维混凝土电磁屏蔽效能在0-3~1000MHz频带内达到20dB以上。其中掺入长度为18mm钢纤维时,在0.3MHz最高达到65dB,掺入长度为6mm钢纤维时,在1.0GHz最高达到41dB。  相似文献   

19.
研究了晶须状碳纳米管导电纸作为集流极对锌锰电池放电性能的影响。使用晶须状碳纳米管(MWCNTs),通过抽滤法制备出碳纳米管纸,利用扫描电子显微镜(SEM)对碳纳米管导电纸进行表征。碳纳米管导电纸作为柔性锌锰电池集流体,正极极片采用二氧化锰为活性材料,负极采用金属锌为电极,使用计算机控制精密电池测试仪测试其电化学性能。实验表明,柔性锌锰电池具有良好的机械柔性,弯曲状依旧保持电压稳定。与采用石墨为集流体的传统锌锰电池相比,在0.3mA恒流放电的情况下,碳纳米管纸作为集流体,锌锰电池的放电时间增加了64.2%,比容量提高186%,比能量提高172%。碳纳米管纸作为集流体的柔性锌锰电池表现出极佳优越性,并且碳纳米管纸的密度对电池放电性能有着较大的影响。  相似文献   

20.
采用一种导电材料预制体-单壁碳纳米管(Single-wall carbon nanotube,SWCNT)无纺布与环氧树脂复合制备了电磁屏蔽复合材料,并对所制复合材料的电磁屏蔽性能进行了表征。结果表明:所制复合材料对电磁波的屏蔽效率随SWCNT无纺布厚度的增加而增加。在较低的SWCNT无纺布填加量下所制复合材料可以实现对低频电磁波较高的屏蔽效率。不同于填加粉体导电材料所制电磁屏蔽复合材料,作为导电材料预制体使用的SWCNT无纺布是一个独立的整体导电薄膜,可以直接引入到基体当中,不存在分散问题。并且通过简单的导电预制体多层叠加的方式即可实现复合材料更高的屏蔽效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号