首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents thermal conductivity measurements of propane over the temperature range of 192–320 K, at pressures to 70 MPa, and densities to 15 mol · L–1, using a transient line-source instrument. The precision and reproducibility of the instrument are within ±0.5%. The measurements are estimated to be accurate to ±1.5%. A correlation of the present data, together with other available data in the range 110–580 K up to 70 MPa, including the anomalous critical region, is presented. This correlation of the over 800 data points is estimated to be accurate within ±7.5%.Nomenclature a n, bij, bn, cn Parameters of regression model - C Euler's constant (=1.781) - P Pressure, MPa (kPa) - P cr Critical pressure, MPa - Q 1 Heat flux per unit length, W · m–1 - t time, s - T Temperature, K - T cr Critical temperature, K - T 0 Equilibrium temperature, K - T re Reference temperature, K - T r Reduced temperature = T/T cr - T TP Triple-point temperature, K Greek symbols Thermal diffusivity, m2 · s–1 - T i Temperature corrections, K - T Temperature difference, K - T w Temperature rise of wire between time t 1 and time t 2, K - T * Reduced temperature difference (T–T cr)/Tcr - corr Thermal conductivity value from correlation, W · m–1 · K–1 - cr Thermal conductivity anomaly, W · m–1 · K–1 - e Excess thermal conductivity, W · m–1 · K–1 - * Reduced density difference - Thermal conductivity, W–1 · m–1 · K–1, mW · m–1 · K–1 - bg Background thermal conductivity, W · m–1 · K–1 - 0 Zero-density thermal conductivity, W · m–1 · K–1 - Density, mol · L–1 - cr Critical density, mol · L–1 - re Reference density, mol · L–1 - r Reduced density Paper presented at the Tenth Symposium on Thermophysical Properties, June 20–23, 1988, Gaithersburg, Maryland, U.S.A.  相似文献   

2.
This paper reports thermal conductivity data for methane measured in the temperature range 120–400 K and pressure range 25–700 bar with a maximum uncertainty of ± 1%. A simple correlation of these data accurate to within about 3% is obtained and used to prepare a table of recommended values.Nomenclature a k ,b ij ,b k Parameters of the regression model, k= 0 to n; i =0 to m; j =0 to n - P Pressure (MPa or bar) - Q kl Heat flux per unit length (mW · m–1) - t time (s) - T Temperature (K) - T cr Critical temperature (K) - T r reduced temperature (= T/T cr) - T w Temperature rise of wire between times t 1 and t 2 (deg K) - T * Reduced temperature difference (TT cr)/T cr - Thermal conductivity (mW · m–1 · K–1) - 1 Thermal conductivity at 1 bar (mW · m–1 · K–1) - bg Background thermal conductivity (mW · m–1 · K–1) - cr Anomalous thermal conductivity (mW · m–1 · K–1) - e Excess thermal conductivity (mW · m–1 · K–1) - Density (g · cm–3) - cr Critical density (g · cm–3) - r Reduced density (= / cr) - * Reduced density difference ( cr )/ cr   相似文献   

3.
The paper presents thermal conductivity measurements of ethane over the temperature range of 290–600 K at pressures to 700 bar including the critical region with maximum uncertainty of 0.7 to 3% obtained with a transient line source instrument. A correlation of the data is presented and used to prepare tables of recommended values that are accurate to within 2.5% in the experimental range except near saturation, and in the critical region, where the anomalous thermal conductivity values are predicted to within 5%.Nomenclature a k , b ij , b k , c i Parameters of the regression model, k=0 to n, i=0 to m, j=0 to n - P Pressure, (MPa or bar) - Q l Heat flux per unit length (mW · m–1) - t Time, s - T Temperature, K - T cr Critical temperature, K - T r Reduced temperature = T/T cr - T w Temperature rise of wire between times t 1 and t 2 K - T * Reduced temperature difference (T–T cr)/T cr - Thermal conductivity, mW · m–1 · K–1 - 1 Thermal conductivity at 1 bar, mW · m–1 · K–1 - bg Background thermal conductivity, mW · m–1 · K–1 - cr Thermal conductivity anomaly, mW · m–1 · K–1 - e Excess thermal conductivity, mW · m–1 · K–1 - Density, g · cm–3 - cr Critical density, g · cm–3 - r Reduced density, = / cr - * Reduced density difference =(- cr)/ cr  相似文献   

4.
Thermophysical properties of molten germanium have been measured using the high-temperature electrostatic levitator at the Jet Propulsion Laboratory. Measured properties include the density, the thermal expansivity, the hemispherical total emissivity, the constant-pressure specific heat capacity, the surface tension, and the electrical resistivity. The measured density can be expressed by liq=5.67×103–0.542 (TT m ) kg·m–3 from 1150 to 1400 K with T m=1211.3 K, the volume expansion coefficient by =0.9656×10–4 K–1, and the hemispherical total emissivity at the melting temperature by T, liq(T m)=0.17. Assuming constant T, liq(T)=0.17 in the liquid range that has been investigated, the constant-pressure specific heat was evaluated as a function of temperature. The surface tension over the same temperature range can be expressed by (T)=583–0.08(TT m) mN·m–1 and the temperature dependence of the electrical resistivity, when r liq(T m)=60·cm is used as a reference point, can be expressed by r e, liq(T)=60+1.18×10–2(T–1211.3)·cm. The thermal conductivity, which was determined from the resistivity data using the Wiedemann–Franz–Lorenz law, is given by liq(T )=49.43+2.90×10–2(TT m) W·m–1·K–1.  相似文献   

5.
We have used the transient hot-wire technique to make absolute measurements of the thermal conductivity of dry, CO2-free air in the temperature range from 312 to 373 K and at pressures of up to 24 MPa. The precision of the data is typically ±0.1%, and the overall absolute uncertainty is thought to be less than 0.5%. The data may be expressed, within their uncertainty, by polynomials of second degree in the density. The values at zero-density agree with other reported data to within their combined uncertainties. The excess thermal conductivity as a function of density is found to be independent of the temperature in the experimental range. The excess values at the higher densities are lower than those reported in earlier work.Nomenclature Thermal conductivity, mW · m–1 · K–1 - Density, kg · m–3 - C p Specific heat capacity at constant pressure, J · kg–1 · K–1 - T Absolute temperature, K - q Heat input per unit wire length, W · m–1 - t Time, s - K(=/C p) Thermal diffusivity, m2 · s–1 - a Wire radius, m - Euler's constant (=0.5772 ) - p c Critical pressure, MPa - T c Critical temperature, K - c Critical density, kg · m–3 - R Gas constant (=8.314 J · mol–1 · K–1) - V c Critical volume, m3 · mol–1 - Z c(=p c V c/RT c) Critical compressibility factor  相似文献   

6.
Necessary conditions are established for the validity of the Hottel formulas for the absorptivity relative to black radiation. The formulas are used in describing the absorption of a badly mixed medium and for nonblack incident radiation.Notation x ray path in mat - p, P partial and total pressure - Peff effective broadening pressure - T, T0 gas and wall temperatures, °K - T*, Ti selected temperature values - Tc weighted-mean temperature - a0 absorptivity of the gas for black radiation - a same for a flux with nonblack spectrum - emissivity - m, u, n, , power exponents - i 0j Planck function for the center of the band, cm · W/m2 · sr - Ij incident flux intensity at the center of the band j, cm · W/m2 · sr - I integrated incident flux intensity, W/m2 · sr - Aj integral absorption (equivalent width) of band f, cm–1 - j mean absorption in the band - wave number, cm–1 - 0 position of the band center - j width parameter - effj effective width - j total width of the band j, cm–1 - Dj mean transmissivity in the band j - S integrated line intensity, cm–1/mat - d, b spacing between lines and their half-width, cm–1 - Sj integrated intensity of the band j - L Landenburg and Reiche functions - spectral absorption coefficient, mat–1 - (T) dimensionless function - ci dimensionless number - R*, Rc general notation for parameters averaged over the band and for Tc - E Elsasser function Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 20, No. 5, pp. 802–808, May, 1971.  相似文献   

7.
The paper reportsh E values at 298.15 K andv E and values at various temperatures for binary mixtures of propyl or butyl benzoate andn-heptane. The excess Gibbs energy of viscous flow,g *E, and the thermodynamic activation properties were calculated from these values. The results are compared with those for similar mixtures and interpreted on the basis of the characteristic dipole-dipole interactions of alkyl esters.Nomenclature A i Parameters in Eq. (2) - dg *E Gibbs free energy of viscous flow (J · mol–l) - dg Activation free energy (kJ · mol–1) - K Parameter in Eq. (2) - h Planck constant - h E Excess enthalpy (J · mol–1) - h Activation enthalpy (kJ · mol–1) - N Avogadro number - R Universal gas constant (J · K–1 · mol–1) - s Standard deviation - s Activation entropy (J · K–1 · mol–1) - T Temperature (K) - v Molar volume of pure component (m3 · mol–1) - v E Excess volume (m3 · mol–1) - x i Mole fraction of componenti Greek Letters Expansion coefficient (K–1) - Density (kg · m–1 ) - Viscosity (mPa · s ) - Apparent excess viscosity (mPa · s)  相似文献   

8.
Measurements of thermal conductivity of 6N to 3N pure aluminum in the temperature range 5–50 K subjected to fast neutron irradiation, with exposures of 1013 and 1016 n · cm–2, are reported. The thermal conductivity maximum was found to shift towards higher temperatures with an increase in the fast neutron irradiation exposure. At high temperatures, a departure from Wilson's theory was observed, which may be attributed to the existence of additional electron scattering mechanisms. An increase in both ideal and residual thermal resistivity components with an increase in the radiation exposure was noted.Nomenclature I 5 (/t) Debye integral of the fifth order - –m slope of the straight line that crosses maximum thermal conductivity values - n exponent in ideal thermal resistivity component - T m temperature corresponding to maximum thermal conductivity - W e total electronic thermal resistivity - W i ideal thermal resistivity - W 0 residual thermal resistivity - ideal thermal resistivity coefficient in Eq. (4) - ideal thermal resistivity coefficient in Eq. (1) - constant related to the ideal part of thermal resistivity in Eq. (2) - () ideal thermal resistivity coefficient depending on irradiation exposure - () residual thermal resistivity coefficient depending on irradiation exposure - thermal conductivity - m maximum thermal conductivity - Debye characteristic temperature - irradiation exposure  相似文献   

9.
The thermal conductivity, , of vitreous boron trioxide was measured, using a hot-wire procedure, from 170 to 570 K and under pressures of up to 1.7 GPa. The thermal conductivity at room temperature and zero pressure was found to be 0.52 W · m–1 · K–1. The values of the logarithmic pressure derivative, g = d(ln )/d(ln ), where is the density, were found to be 1.1 for uncompacted glass and 0.7 for glass compacted to 1.2 GPa. The variation of with temperature at constant density was approximately linear, with a positive slope of 1.38×10–3W·m–1·K–2.  相似文献   

10.
Results are given of an analytic investigation of transient processes inside counterflow apparatuses and heat exchangers with temperature disturbance in one of the heat carriers at the entry to the apparatus.Notation =(t–t0)/(T0–t0),=(T–t0)/(T0 s-t0) relative temperatures - t, T temperatures of material and gas respectively - t0, T0 same for the initial state - Z=[ Vm1/c(1–w/wg)] [–(y0–y)/wg] dimensionless time - m1=1/(1+Bi/) solidity coefficient - B1=( FR/) Biot number - F V heat-exchange coefficients referred to 1 m2 surface and 1 m3 layer - R depth of heat penetration in a portion - portion heat conductivity coefficient - shape coefficient (=0 for a plate,=1 for a cylinder,=2 for a sphere) - c, Cg heat capacities of material and gas respectively - , g volumetric masses - w, Wg flow velocities of material and gas - y distance from the point of entry to the heating heat carrier - y0 heat-exchanger length - Y= Vm1y/WgCg g dimensionless coordinate - m=cw/Cg gWg water equivalent ratio Deceased.Translated from Inzhenerno-Fizicheskii Zhurnal, vol. 20, No. 5, pp. 832–840, May, 1971.  相似文献   

11.
Contact thermal resistance is considered for joints with corrugated surfaces. Formulas are derived that are confirmed by experiment.Notation Rc total thermal resistance of contact, m2 · deg/W - RM, Rcl thermal resistance of real contact and of contactless region, m2· deg/W - coefficient of contraction of heat flux lines to spots of real contact - Sm, Sc So real, contour and nominal areas of contact surfaces, m2 - a mean radius of contact spot, m - ¯M reduced thermal conductivity of contact (1 and 2) materials, W/m · deg - c thermal conductivity of contact medium, W/m · deg - n number of contact spots of microroughnesses at nominal contact surface - area ratio - b, parameters of support curve of surface - r radius of roughness, m - qc contour pressure, N/m2 - N normal load, N - coefficient depending on deformation mechanism - B coefficient characterizing properties - K coefficient depending on and - hmax hav maximum and mean height of microroughness protrusions, m - P specific normal load to contact surface, N/m2 - E Young's modulus, N/m2 - Rw wave radius, m - nw numbers of wave contact spots at nominal surface - Lel, Lp longitudinal and transverse wave pitch, m - eq equivalent thickness of intercontact laminar, m - Hav mean height of waves, m - relative approach of surfaces under load - c approach of surfaces under load - HB Brinell hardness, N/m2 - Poisson's ratio - 2 relative contact surfaces Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 20, No. 5, pp. 846–852, May, 1971.  相似文献   

12.
An analytical solution is obtained for the axisymmetric problem of free concentrational convection in a vapor-gas mixture with isothermal evaporation of liquids from open cylindrical vessels. Formulas are derived to calculate concentration fields, local and integral mass fluxes of vapor. A comparative analysis of the results of analytical and numerical simulation is carried out for the processes of the evaporation of liquids under the conditions of convective mass transfer.Notation p pressure, Pa - density, kg/m3 - v velocity, m/sec - , dynamic and kinematic viscosity, Pa·sec, m2/sec - D diffusion coefficient, m2/sec - 1, 2 mass fractions of vapor and gas in a mixture - g free fall acceleration, m/sec2 - M 1,M 2 molar masses of vapor and gas, kg/kmole - r , z radial and axial components of the velocity of a gas-vapor mixture, m/sec - r, z cylindrical coordinates, m - R, H radius and height of vessel, m - j local mass flux of vapor, kg/(m2·sec) - j vessel cross-sectional area-averaged mass flux of vapor, kg/(m2·sec) - j vessel cross-sectional area-averaged mass flux Chelyabinsk State Technical University, Russia. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 68, No. 3, pp. 403–407, May–June, 1995.  相似文献   

13.
The results of an experimental investigation of transient processes of nonsteady heat exchange in a high-temperature air stream are presented.Notation R radius of thermocouple junction, m - a thermal diffusivity, m2/sec - th thickness of thermal boundary layer, m - thermal conductivity of gas, J/m·sec·deg - heat-transfer coefficient, W/m2·deg Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 41, No. 3, pp. 520–523, September, 1981.  相似文献   

14.
The thermal conductivities of tin and lead in solid and liquid states have been determined using a nonstationary hot wire method. Measurements on tin and lead were carried out over temperature ranges of 293 to 1473 K and 293 to 1373 K, respectively. The thermal conductivity of solid tin is 63.9±1.3 Wm–1K–1 at 293 K and decreases with an increase in temperature, with a value of 56.6±0.9 Wm–1K–1 at 473 K. For solid lead, the thermal conductivity is 36.1±0.6 Wm–1K–1 at 293 K, decreases with an increase in temperature, and has a value of 29.1±1.1 Wm–1K–1 at 573 K. The temperature dependences for solid tin and lead are in good agreement with those estimated from the Wiedemann–Franz law using electrical conductivity values. The thermal conductivities of liquid tin displayed a value of 25.7±1.0 Wm–1K–1 at 573 K, and then increased, showing a maximum value of about 30.1 Wm–1K–1 at 673 K. Subsequently, the thermal conductivities gradually decreased with increasing temperature and the thermal conductivity was 10.1±1.0 Wm–1K–1 at 1473 K. In the case of liquid lead, the same tendency, as was the case of tin, was observed. The thermal conductivities of liquid lead displayed a value of 15.4±1.2 Wm–1K–1 at 673 K, with a maximum value of about 15.6 Wm–1K–1 at 773 K and a minimum value of about 11.4±0.6 Wm–1K–1 at 1373 K. The temperature dependence of thermal conductivity values in both liquids is discussed from the viewpoint of the Wiedemann–Franz law. The thermal conductivities for Group 14 elements at each temperature were compared.  相似文献   

15.
A procedure is developed for calculating the maximum temperature in the working gap of a magnetofluid seal and the limiting rate of rotation of hermetically sealed shafts.Notation Tmax maximum temperature of heating of the sealing fluid, °C - thickness of the sealing layer, m - v0 linear velocity of rotation of the surface of the hermetically sealed shaft, m/sec - density, kg/m3 - viscosity, N·sec/m2 - c specific heat capacity at constant pressure, J/(kg·deg) - coefficient of thermal conductivity, W/(m·deg) - transfer coefficient, W/(m3·deg) - q heat flux, W/m2 Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 42, No. 1, pp. 58–65, January, 1982.  相似文献   

16.
Analytical expressions are obtained for the longitudinal temperature profiles of the wall and the stream of cryogen during the cooling of a cryogenic pipeline. A comparison of the calculated data with experiment gives their good agreement.Notation T temperature, °K - density, kg/m3 - heat-transfer coefficient between wall and stream, W/m2·°K - perimeter wetted by stream, m - c heat capacity, J/kg·°K - F cross-sectional area, m2 - G flow rate of cryogen, kg/sec - t time, sec - x longitudinal coordinate, m - coefficient of thermal conductivity of cryogen, W/m·°K - coefficient of dynamic viscosity, m2/sec - Pr Prandtl number - dimensionless time - dimensionless longitudinal coordinate - dimensionless longitudinal coordinate in the moving coordinate system - width of zone of heat exchange - dimensionless temperature - P pressure of cryogen, N/m2 - R gas constant, J/kg·°K - dimensionality of temperature - v1 dimensionless velocity of movement of steady temperature profile - ¯cw integral-mean heat capacity of wall, J/kg·°K - a b, m, constant coefficients in the approximating equations. Indices: 0, initial value - w wall - g cryogen - r relative value Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 41, No. 3, pp. 524–531, September, 1981.  相似文献   

17.
A new temperature-enthalpy approach has been proposed to model self-propagating combustion synthesis of advanced materials. This approach includes the effect of phase change which might take place during a combustion process. The effect of compact porosity is also modelled based on the conduction, convection and radiation in the local scale. Various parametric studies are made to analyse numerically the effects of activation energy, non-reacting phase content, porosity, Biot number, etc. The model predictions of the combustion pattern are in close agreement with those observed in experiments.Nomenclature c Concentration (wt %) - B i Biot number =hL/k - f Fractional value - c p Specific heat (J kg–1 K) - h Heat-transfer coefficient (W m–2 K) - L Height of material,m - Q Heat of reaction (J kg–1) - H SL * Latent heat of fusion (J kg–1) - H SE * Latent heat of fusion at eutectic (J kg–1) - k Thermal conductivity (W m–1 K) - k Equilibrium partition coefficient - Reaction kinetic function - t Time (s) - Non-dimensional time - T Temperature (K) - T 0 Initial temperature (K) - Non-dimensional temperature - H Enthalpy (J kg–1) - Kinetic function - Non-dimensional enthalpy - v f Volume fraction of non-reactive phase - V Volume (m3) - k 0 Pre-exponential constant to reaction rate (s–1) - z Cartesian co-ordinate - z* Non-dimensional co-ordinate - Non-dimensional reacted fraction - Density (kg m–3) - A non-dimensional temperature - Pore surface emissivity - Planck's constant - i Initial state - r Reacted state - l, L Liquid state - s Solid state - E Eutectic - M Melting point of pure material - P Centre of control volume - s Southern side of central volume - S Southern control volume - n Northern side of central volume - N Northern control volume - * Non-dimensional term - n New time level - o Old time level - m Iteration level  相似文献   

18.
The specific heat at constant volume cv shows a weak singularity at the critical point. Renormalization group techniques have been applied, predicting a universal critical behavior which has to be experimentally confirmed for different systems. In this paper an experiment is presented to measure the specific heat of SF6 along the critical isochore (c=0.737 g·cm–3), applying a continuous heating method. The results cover a temperature span of –1.5×10–2< <1.70×10–2 [=(TT c)/T c] and were strongly affected by gravity effects that emerge in the sample of 1-mm hydrostatic height near the critical point. Using regression analysis, data were fitted with functions of the form c v/R=A × ¦¦ + B for the one-phase state and c v/R=A × ¦¦ + B for the twophase state. Within their error bounds the critical values (==0.098, A/A=1.83) represent the measurements for the temperature span 3.5×10–5< ¦¦<2.0×10 –3, in good agreement with theoretical predictions. In order to exclude density profiles in the specimen, which are unavoidable in terrestrial experiments due to the high compressibility of fluids at the critical point and the gravity force, a space-qualified scanning ratio calorimeter has been constructed, which will permit long-term cv measurements under microgravity (-g) conditions. The experiment will be part of the German Spacelab mission in October 1985. The significant features of the apparatus are briefly sketched.Paper presented at the Ninth Symposium on Thermophysical Properties, June 24–27, 1985, Boulder, Colorado, U.S.A.  相似文献   

19.
Experimental measurements of the friction factor and the dimensionless heat-transfer j-factor were carried out for the turbulent pipe flow of viscoelastic aqueous solutions of polyacrylamide. The studies covered a wide range of variables including polymer concentration, polymer and solvent chemistry, pipe diameter, and flow rate. Degradation effects were also studied. It is concluded that the friction factor and the dimensionless heat transfer are functions only of the Reynolds number, the Weissenberg number, and the dimensionless distance, provided that the rheology of the flowing fluid is used.Nomenclature cp Specific heat of fluid, J · kg–1 · K–1 - d Diameter of tube, m - f Fanning friction factor, w/(V2/2) - h Convective heat-transfer coefficient, q w(T w{T b), W · m–2 · K–1 - k Thermal conductivity of fluid, W · m–1 · K–1 - j H Heat-transfer j-factor, StPr a 2/3 - L e Entrance length, m - Nu Nusselt number, hd/k - Pr a Prandtl number based on apparent viscosity at the wall, c p/k - q w Heat flux at the wall, W · m–2 - Re a Reynolds number based on apparent viscosity at the wall, Vd/ - St Stanton number, Nu/(Re a Pr a) - T Temperature, K - T b Bulk temperature of fluid, K - T w Inside-wall temperature, K - V Average velocity, m · s–1 - Ws Weissenberg number, V/d - x Axial coordinate, m Greek symbols g Shear rate, s–1 - Apparent viscosity evaluated at the wall, P5 - 0 Zero shear-rate viscosity, P5 - Apparent viscosity at infinite shear rate, P5 - Characteristic time of fluid, s - Density of fluid, kg · m–3 - w Wall shear stress, N · m–2 Invited paper presented at the Ninth Symposium on Thermophysical Properties, June 24–27, 1985, Boulder, Colorado, U.S.A.  相似文献   

20.
Experimental data on the coarsening of precipitates and dispersoids in aluminium-based matrices are reviewed. Available data are tabulated as K=(r 3r 0 3 )/t where r 0 is the initial particle radius and r is its value after time t at temperature T, and then plotted as log (KT) against 1/T for consolidation and assessment. The considerable body of data for -A3Li in Li-containing alloys is well represented by K=(K 0/T) exp (–Q/RT) with K 0=(1.3 –0.5 +3.0 ) × 10–13m3Ks–1 and Q=115±4kJ mol–1. The relatively limited data for and in Cucontaining alloys are representable by the same relationship with K 04 × 10–8 and — 4 × 10–10 m3 Ks–1, respectively, and Q — 140 kJ mol–1. Available data for coarsening of L12 Al3(Zr, V) and related phases in Zr-containing alloys and of Al12Fe3Si and related phases in Al-Fe based alloys indicate (i) rates of coarsening at 375 to 475 °C (0.7 to 0.8Tm) five to eight orders of magnitude less than would be expected for , and in this temperature range, and (ii) high activation energies of 300 and 180 kJ mol–1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号