首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nonlinear speed control for a permanent-magnet (PM) synchronous motor using a simple disturbance estimation technique is presented. By using a feedback linearization scheme, the nonlinear motor model can be linearized in the Brunovski canonical form, and the speed controller can be easily designed based on the linearized model. This technique, however, gives an undesirable output performance under the mismatch of the system parameters and load conditions. An adaptive linearization technique and a sliding-mode control technique have been reported. Although good performance can be obtained, the controller designs are quite complex. To overcome this drawback, the controller parameters are estimated by using a disturbance observer theory where the disturbance torque and flux linkage are estimated. Since only the two reduced-order observers are used for the parameter estimation, the observer designs are considerably simple and the computational load of the controller for parameter estimation is negligibly small. The nonlinear disturbances caused by the incomplete linearization can be effectively compensated by using this control scheme. Thus, a desired dynamic performance and a zero steady-state error can be obtained. The proposed control scheme is implemented on a PM synchronous motor using a digital signal processor (TMS320C31) and the effectiveness is verified through the comparative simulations and experiments  相似文献   

2.
针对永磁同步电机预测控制中电机参数扰动偏差造成的输出电流静差及振荡问题,采用基于扩张状态观测器的无差拍电流预测控制算法,构建相应的扰动观测器来观测参数偏差造成的系统扰动,为传统预测控制算法提供实时性扰动补偿。采用有功阻尼概念对转速PI参数进行设计,并针对控制系统的延时进行了补偿。仿真结果表明所提出的算法能够快速无静差地观测系统扰动,有效避免参数扰动偏差对电流预测系统的影响,同时转速环也具有良好的动态性能。  相似文献   

3.
Active compensation of torque harmonics in high-performance synchronous permanent magnet (PM) motor drives requires high-bandwidth current control. It is demonstrated that proportional integral (PI) current control exhibits performance limits, even when feedforward compensation of the rotor induced voltage and the stator inductance drop is used. High bandwidth requirements are satisfied using a digital deadbeat current controller. Sampling time delays are eliminated to the extent possible by means of a current predictor. The current controller and the predictor refer to a model of the parasitic effects of the PM synchronous machine that is acquired and adapted to parameter changes in real time. Stator current distortions due to deviations from the sinusoidal flux linkage distribution are thus eliminated. The control system facilitates compensation of high-frequency torque ripple of the machine  相似文献   

4.
A real-time current controller for PWM inverter-fed permanent-magnet synchronous motor drives is presented and analyzed. The proposed current control scheme is based on predictive control with a parallel integral loop added to compensate for the inaccuracy of the motor model and for the variations of motor parameters and DC voltage source. The proposed current control scheme is analyzed and its performance is evaluated by computer simulation. An EPROM-based implementation is presented in which calculations and pulsewidth modulation are executed by lookup tables resulting in high-speed operation. The controller performance is evaluated using a prototype l kW PM synchronous servo drive. Experimental results are given and discussed  相似文献   

5.
Adaptive high bandwidth current control for induction machines   总被引:2,自引:0,他引:2  
For high performance induction machine control, the technique of indirect rotor flux oriented vector control is commonly utilized. The torque performance of this technique is significantly affected by the performance of the current control loops. In this paper a new adaptive high bandwidth current controller for induction machines is presented. The technique is derived and validated through simulation and experimental results. The new architecture is shown to achieve a dead-beat response, with a rise time of one sample period and no overshoot, when the inverter voltage limit is not exceeded. When the voltage limit is exceeded the current response is achieved in a minimum time with no overshoot. It is shown that the new control technique achieves similar dynamic response to the conventional dead-beat control scheme while eliminating parameter sensitivity issues. It is demonstrated that the new algorithm offers higher bandwidth than the commonly used synchronous frame proportional plus integral control technique while maintaining good steady state performance.  相似文献   

6.
Two schemes for controlling the motor currents in PWM (pulse-width-modulated) inverters in synchronous motor drives are considered: hysteresis control and predictive control. It is pointed out that the system static and dynamic performance can be improved by selecting the control mode in an adaptive manner according to the operating conditions. In steady state, the predictive mode is selected to reduce current ripple and to obtain stable switching frequency. During large transients, such as during starting or load variations, the hysteresis mode is selected to provide fast response. The performance of the proposed controls scheme has been studied by simulation, and the results agree well with the prediction. This adaptive control scheme can be implemented using a high-performance 16-bit microcontroller supported by a mathematical coprocessor  相似文献   

7.
基于实现永磁同步电机伺服系统矢量控制,得到良好的系统动态响应的目的,采用以TMS320F28035为控制核心的全数字DSP速度控制方案,通过硬、软件设计、参数整定以及波形图分析,实验结果表明,该系统电流跟踪性能提升10%,稳态精度提升15%。  相似文献   

8.
The winding current response speed and the adequate commutation significantly affect the control performance of a sensorless brushless dc motor (BDCM) drive. In this paper, the studies about these two issues to enhance the performance of BDCM drive are made. First, the sensorless inverter-fed BDCM drive with a proposed current command generation scheme is established. An intelligent commutation instant tuning technique is developed to pursue better motor torque generating characteristics. For achieving this goal, the motor drawn line current minimization is employed as the performance index in making the commutation tuning. After generating the current command with adequate commutation, a robust current-mode controller is further developed and applied to greatly speed up the square wave current tracking response and the response is rather insensitive to the machine parameter and back electromotive force (back-EMF) changes. In Addition, a simple starting method and a speed estimation approach are also proposed. Some experimental results are provided to demonstrate the validity of the proposed control method.  相似文献   

9.
A new instantaneous torque-control strategy is presented for high-performance control of a permanent magnet (PM) synchronous motor. In order to deal with the torque pulsating problem of a PM synchronous motor in a low-speed region, new torque estimation and control techniques are proposed. The linkage flux of a PM synchronous motor is estimated using a model reference adaptive system technique, and the developed torque is instantaneously controlled by the proposed torque controller combining a variable structure control (VSC) with a space-vector pulse-width modulation (PWM). The proposed control provides the advantage of reducing the torque pulsation caused by the nonsinusoidal flux distribution. This control strategy is applied to the high-torque PM synchronous motor drive system for direct-drive applications and implemented by using a software of the digital signal processor (DSP) TMS320C30. The simulations and experiments are carried out for this system, and the results demonstrate the effectiveness of the proposed control  相似文献   

10.
同步带传动是一种常用的传动机构。在高速高精度设备中,其动态性能直接影响到设备的精度和效率。对同步带系统进行建模,对电机模型、同步带传动模型和控制模型进行耦合分析并采用Simulink仿真系统中电流、速度以及位移全闭环的PD参数整定过程,获得了良好的动静态特性和最优控制参数。通过试验表明,运用参数整定仿真方法可高效优化实际控制对象的PD参数。并有效缩短调试时间。  相似文献   

11.
A simple source voltage-clamped resonant link (SVCRL) inverter is proposed to clamp the DC-link voltage to the input source voltage and reduce the current rating of a resonant inductor. The current control of a permanent magnet synchronous motor (PMSM) employing a predictive current control technique (PCCT) for the SVCRL, inverter is also investigated to overcome the disadvantage of the current-regulated delta modulation (CRDM) control technique. By employing the PCCT based on the discrete model of a PMSM and estimation of back electromotive force (EMF), the minimized current ripple with a small number of switchings can be obtained. Finally, the comparative computer simulation and experimental results are given to show the usefulness of the proposed technique  相似文献   

12.
A simple control technique for three-phase shunt active filters without computation of the reactive current component is presented. A current controller with fast dynamics for an active filter is described. Reactive current is directly controlled without the need for sensing and computing the reactive component of the load current, thus simplifying the control system. Current compensation is done in the time domain, allowing a fast time response. The dc voltage control loop keeps the voltage across the dc capacitor constant. High power factor control by an active filter is described. All control functions are implemented in software using a singlechip microcontroller, thus simplifying the control circuit. Any current-controlled synchronous rectifier can be used as a shunt active filter through only the simple modification of the software and the addition of current sensors. It is shown through experimental results that the proposed controller gives good performance for the shunt active filter.  相似文献   

13.
An improved deadbeat control for UPS using disturbance observers   总被引:2,自引:0,他引:2  
A digital control technique for the inverter stage of uninterruptible power supplies is proposed, which is based on a predictive regulator on both output voltage and inductor current. Its aim is to achieve a deadbeat dynamic response for the controlled variables (output voltage and inverter current). Besides the linear state feedback which allocates system poles at the origin so as to achieve deadbeat response for all state variables, the use of a disturbance observer for the estimation of the load current and of any other source of errors (such as dead-times, parameter, and model mismatches) is investigated. The proposed solution is able to guarantee a fast dynamic response and also a precise compensation of any source of unpredictable disturbance. Moreover, with a proper design of observer parameters, it is possible to reduce control sensitivity to model uncertainties, parameter mismatches, and noise on sensed variables, which usually characterizes existing deadbeat control techniques. Finally, the control algorithm is quite simple and requires only the measurements of the output voltage and inductor current. Experimental results on a single-phase 2 kVA prototype show the effectiveness of the proposed approach.  相似文献   

14.
A model reference adaptive control (MRAC)-based nonlinear speed control strategy of an interior permanent magnet (IPM) synchronous motor with an improved maximum torque operation is presented. In most servo systems, the controller is designed under the assumption that the electrical dynamics are neglected by the field-oriented control. This requires a high-performance inner-loop current control strategy. However, the separate designs for a high-performance current regulator and a robust speed controller need considerable effort. To overcome this limitation, an MRAC-based nonlinear speed control strategy for the IPM synchronous motor is presented, considering the whole nonlinear dynamics. Nonlinear speed control is achieved by an input–output linearization scheme. This scheme, however, gives an unsatisfactory performance under the mismatch of the system parameters and load conditions. For the robust output response, the controller parameters are estimated by an MRAC technique in which the disturbance torque and flux linkage are estimated. The adaptation laws are derived from Lyapunov stability theory. In view of the drive efficiency, the motor has to provide the maximum torque for a given input. To drive the IPM synchronous motor under improved maximum torque operation, the estimated flux linkage is employed for the generation of the d-axis current command. The robustness and output performance of the proposed control scheme are verified through simulation results.  相似文献   

15.
It is shown how very simple velocity-tracking robust controllers for permanent magnet motors driving nonlinear loads can be designed based on variable structure systems techniques. Very fast dynamics, accurate and robust velocity-tracking are achieved with very simple hardware components without resorting to powerful digital signal processors and related interface hardware. A cascade control structure is used to ensure maximum flexibility. The controller for a DC motor is considered in great detail. Extension to AC synchronous PM motors is also presented. At the different control levels robustness is addressed with specific algorithms and the simplest solution is always selected. The controller architecture for both DC and AC synchronous motor are presented and discussed in the paper. Experimental results related to the control of a DC motor driving a nonlinear load are also shown. They demonstrate feasibility and excellent performances of the proposed approach  相似文献   

16.
李勇  李巍  李社伟  陆永平   《电子器件》2007,30(5):1816-1818
采用数控模拟开关CD4052构成的同步相敏解调电路具有结构简单,控制方便等特点.将此同步相敏解调电路与大功率运放OPA548一起应用于永磁低速同步电机角度随动系统,可提高整个系统的控制精度,并且相对于传统的角度随动和指示系统,该系统具有结构简单,控制特性好等优点.试验结果证明该方案具有很好的工程实用性.  相似文献   

17.
永磁同步电机因其优越的性能近年来得到了广泛应用。针对双闭环控制器参数整定困难所导致的控制效果不佳的问题,文中提出了基于极点配置和Ramp函数的改进型双闭环PI控制器。从永磁同步电机矢量控制算法的角度出发,建立了速度、电流双闭环解耦控制的系统模型,并在此模型下论述了速度环、电流环控制器的设计方法,给出改进后双闭环控制器参数的计算结果。对所研究方法分别进行了计算机仿真和实际试验,结果表明优化后的系统减小了系统过冲,缩短了稳定时间,提高了系统动态响应,具有良好的工程意义。  相似文献   

18.
Sensorless torque control of SyncRel motor drives   总被引:1,自引:0,他引:1  
This paper describes a direct self-control (DSC) scheme for synchronous reluctance motor drives. The presented DSC scheme develops a new torque control methodology that does not require any position transducer to synchronize the stator current vector with the rotor. Such a control strategy differs from the conventional DSC approach in order to fit some specific requirements of synchronous reluctance (SyncRel) machines. First, torque and rotor position are controlled instead of torque and stator flux as in a conventional DSC scheme. Second, the operating sector is selected according to the actual position of the current vector rather than the position of the stator flux. The proposed methodology allows simplifying implementation of the torque control on SyncRel drives and reducing the global cost for medium-performance electric drives. Simulations and experimental tests on a 1.5-kW motor drive are provided to evaluate the consistency and the performance of the proposed control technique  相似文献   

19.
This paper presents an online self-tuning artificial-neural-network (ANN)-based speed control scheme of a permanent magnet (PM) DC motor. For precise speed control, an online training algorithm with an adaptive learning rate is introduced, rather than using fixed weights and biases of the ANN. The complete system is implemented in real time using a digital signal processor controller board (DS1102) on a laboratory PM DC motor. To validate its efficacy, the performances of the proposed ANN-based scheme are compared with a proportional-integral controller-based PM DC motor drive system under different operating conditions. The comparative results show that the ANN-based speed control scheme is robust, accurate, and insensitive to parameter variations and load disturbances  相似文献   

20.
This paper proposes a new control algorithm for a matrix converter permanent magnet synchronous motor (PMSM) drive system. First, a new switching strategy, which applies a backpropagation neural network to adjust a pseudo DC bus voltage, is proposed to reduce the current harmonics of the permanent magnet synchronous motor. Next, a two-degree-of-freedom controller is proposed to improve the system performance. The parameters of this controller are obtained by using a frequency-domain optimization technique. The controller design algorithm can be applied in an adjustable speed control system and a position control system to obtain good transient responses and good load disturbance rejection abilities. The controller design procedures require only algebraic computation. The implementation of this kind of controller is only possible by using a high-speed digital signal processor. In this paper, all the control loops, including current-loop, speed-loop, and position-loop, are implemented by a 32-b TMS320C40 digital signal processor. The hardware, therefore, is very simple. Several experimental results are shown to validate the theoretical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号