首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Products, substrates, and inhibitors of the threonine dehydratase from sheep liver (EC 4.2.1.16) have been investigated by proton nuclear magnetic resonance and optical rotation. The alpha-ketobutyrates produced from L-threonine and L-allothreonine in 2H2O have been shown to incorporate a single deuterium into the beta position. The dehydratase forms R-alpha-ketobutyrate-beta-d from L-threonine and L-allothreonine. The alpha protons of the substrates, threonine and allothreonine, do not exchange in the presence of the dehydratase. In the presence of dehydratase, the competitive inhibitors L-cysteine and L-alanine undergo alpha-proton exchange. Highly purified dehydratase has been used to determine kinetic parameters for the usbstrates L-threonine, L-allothreonine, L-serine, and L-chloroalanine. L-Chloroalanine, in addition to being a substrate, inhibits the dehydratase in a manner kinetically identical with that of L-serine.  相似文献   

2.
Properties and subunit structure of pig heart pyruvate dehydrogenase   总被引:1,自引:0,他引:1  
Pyruvate dehydrogenase [EC 1.2.4.1] was separated from the pyruvate dehydrogenase complex and its molecular weight was estimated to be about 150,000 by sedimentation equilibrium methods. The enzyme was dissociated into two subunits (alpha and beta), with estimated molecular weights of 41,000 (alpha) and 36,000 (beta), respectively, by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The subunits were separated by phosphocellulose column chromatography and their chemical properties were examined. The subunit structure of the pyruvate dehydrogenase was assigned as alpha2beta2. The content of right-handed alpha-helix in the enzyme molecule was estimated to be about 29 and 28% by optical rotatory dispersion and by circular dichroism, respectively. The enzyme contained no thiamine-PP, and its dehydrogenase activity was completely dependent on added thiamine-PP and partially dependent on added Mg2+ and Ca2+. The Km value of pyruvate dehydrogenase for thiamine diphosphate was estimated to be 6.5 X 10(-5) M in the presence of Mg2+ or Ca2+. The enzyme showed highly specific activity for thiamine-PP dependent oxidation of both pyruvate and alpha-ketobutyrate, but it also showed some activity with alpha-ketovalerate, alpha-ketoisocaproate, and alpha-ketoisovalerate. The pyruvate dehydrogenase activity was strongly inhibited by bivalent heavy metal ions and by sulfhydryl inhibitors; and the enzyme molecule contained 27 moles of 5,5'-dithiobis(2-nitrobenzoic acid)-reactive sulfhydryl groups and a total of 36 moles of sulfhydryl groups. The inhibitory effect of p-chloromercuribenzoate was prevented by preincubating the enzyme with thiamine-PP plus pyruvate. The structure of pyruvate dehydrogenase necessary for formation of the complex is also reported.  相似文献   

3.
Mutations in the pyridoxal phosphate binding site of the tryptophan synthase beta subunit (S377D and S377E) alter cofactor chemistry [Jhee, K.-H., et al. (1998) J. Biol. Chem. 273, 11417-11422]. We now report that the S377D, S377E, and S377A beta2 subunits form alpha2 beta2 complexes with the alpha subunit and activate the alpha subunit-catalyzed cleavage of indole 3-glycerol phosphate. The apparent Kd for dissociation of the alpha and beta subunits is unaffected by the S377A mutation but is increased up to 500-fold by the S377D and S377E mutations. Although the three mutant alpha2 beta2 complexes exhibit very low activities in beta elimination and beta replacement reactions catalyzed at the beta site in the presence of Na+, the activities and spectroscopic properties of the S377A alpha2 beta2 complex are partially repaired by addition of Cs+. The S377D and S377E alpha2 beta2 complexes, unlike the wild-type and S377A alpha2 beta2 complexes and the mutant beta2 subunits, undergo irreversible substrate-induced inactivation by L-serine or by beta-chloro-L-alanine. The rates of inactivation (kinact) are similar to the rates of catalysis (kcat). The partition ratios are very low (kcat/kinact = 0.25-3) and are affected by alpha subunit ligands and monovalent cations. The inactivation product released by alkali was shown by HPLC and by fluorescence, absorption, and mass spectroscopy to be identical to a compound previously synthesized from pyridoxal phosphate and pyruvate. We suggest that alterations in the cofactor chemistry that result from the engineered Asp377 in the active site of the beta subunit may promote the mechanism-based inactivation.  相似文献   

4.
The reaction mechanism of 8-amino-7-oxopelargonate (8-amino-7-oxononoate) synthase from Bacillus sphaericus, an enzyme dependent on pyridoxal 5'-phosphate (pyridoxal-P), which catalyzes the condensation of L-alanine with pimeloyl-CoA, the second step of biotin biosynthesis, has been studied. To facilitate mechanistic studies, an improved over-expression system in Escherichia coli, and a new continuous spectrophotometric assay for 8-amino-7-oxopelargonate synthase were designed. In order to discriminate between the two plausible basic mechanisms that can be put forth for this enzyme, that is: (a) formation of the pyridoxal-P-stabilized carbanion by abstraction of the C2-H proton of the alanine-pyridoxal-P aldimine, followed by acylation and decarboxylation, and (b) formation of the carbanion by decarboxylation followed by acylation, the fate of the C2-H proton of alanine during the course of the reaction has been examined using 1H NMR. Spectra of the 8-amino-7-oxopelargonate formed using either L-[2-2H]alanine in H2O or L-alanine in D2O, showed that the C2-H proton of alanine is lost during the reaction and that the C8-H proton of 8-amino-7-oxopelargonate is derived from the solvent, a result that is only consistent with mechanism (a). Furthermore 8-amino-7-oxopelargonate synthase catalyzes, in the absence of pimeloyl-CoA, the stereospecific exchange, with retention of configuration, of the C2-H proton of L-alanine with the solvent protons. Similarly, 8-amino-7-oxopelargonate synthase catalyzes the exchange of the C8-H proton of 8-amino-7-oxopelargonate. In addition to these exchange reactions, 8-amino-7-oxopelargonate synthase catalyzes an abortive transamination yielding an inactive pyridoxamine 5'-phosphate (pyridoxamine-P) form of 8-amino-7-oxopelargonate synthase and pyruvate. Kinetic analysis gave a rate constant of kexch. = 1.8 min-1 for the exchange reaction which is 10 times lower than the catalytic constant and a rate constant of ktrans. = 0.11 h-1 for the transamination. Finally deuterium kinetic isotope effects (KIE) were measured at position 2 of L-alanine (DV = 1.3) and in D2O (D2OV = 4.0). The magnitudes of the KIE are consistent with a partially rate-limiting abstraction of the C2-H proton of alanine and a partially rate-limiting reprotonation step. Taken together, all these results show that 8-amino-7-oxopelargonate synthase utilizes mechanism (a). 8-Amino-7-oxopelargonate synthase and 5-aminolevulinate synthase, which has also been shown to use mechanism (a), belong to a class of pyridoxal-P-dependent enzymes that catalyze the formation of alpha-oxoamines. Based on the fact that all these alpha-oxoamine synthases share strong sequence similarities, we postulate that they also share the same reaction mechanism.  相似文献   

5.
The rates at which peptide amide hydrogens in folded proteins undergo isotopic exchange are reduced by factors of 10(0)-10(-8) relative to exchange rates at the same peptide linkages in unfolded proteins. To measure the isotopic exchange rates of the most rapidly exchanging peptide amide hydrogens in proteins, a flow-quench deuterium exchange-in step has been added to the protein fragmentation/mass spectrometry method (Zhang, Z.; Smith, D. L. Protein Sci. 1993, 2, 522-531). Isotopic exchange rates in eight short segments spanning the entire backbone of cytochrome c have been determined for exchange-in times of 0.2-120 s. These results show that the isotopic exchange rates of 10 of the peptide amide hydrogens in cytochrome c are similar to those expected for unfolded cyt c, while the exchange rates for 33 other non-hydrogen-bonded amide hydrogens are much less than expected for unfolded cyt c. Since the isotopic exchange rates of the most rapidly exchanging amide hydrogens in folded proteins are a direct measure of their access to the aqueous solvent, the ability to determine these isotopic exchange rates points to the possibility of using quenched-flow amide hydrogen exchange and mass spectrometry as a tool for identifying protein surfaces involved with binding.  相似文献   

6.
GAD65, the smaller isoform of the gamma-aminobutyric acid-synthesizing enzyme glutamic acid decarboxylase is detected as an alpha/beta doublet of distinct mobility on SDS-polyacrylamide gel electrophoresis. Glutamic acid decarboxylase (GAD) 65 is reversibly anchored to the membrane of synaptic vesicles in neurons and synaptic-like microvesicles in pancreatic beta-cells. Here we demonstrate that GAD65alpha but not beta is phosphorylated in vivo and in vitro in several cell types. Phosphorylation is not the cause of the alpha/beta heterogeneity but represents a unique post-translational modification of GAD65alpha. Two-dimensional protein analyses identified five phosphorylated species of three different charges, which are likely to represent mono-, di-, and triphosphorylated GAD65alpha in different combinations of phosphorylated serines. Phosphorylation of GAD65alpha was located at serine residues 3, 6, 10, and 13, shown to be mediated by a membrane bound kinase, and distinguish the membrane anchored, and soluble forms of the enzyme. Phosphorylation status does not affect membrane anchoring of GAD65, nor its Km or Vmax for glutamate. The results are consistent with a model in which GAD65alpha and -beta constitute the two subunits of the native GAD65 dimer, only one of which, alpha, undergoes phosphorylation following membrane anchoring, perhaps to regulate specific aspects of GAD65 function in the synaptic vesicle membrane.  相似文献   

7.
Alanine dehydrogenase [EC 1. 4. 1. 1] was purified to homogeneity from a crude extract of Enterobacter aerogenes ICR 0220. The enzyme had a molecular mass of about 245 kDa and consisted of six identical subunits. The enzyme showed maximal activity at about pH 10.9 for the deamination of L-alanine and at about pH 8.7 for the amination of pyruvate. The enzyme required NAD+ as a coenzyme. Analogs of NAD+, deamino-NAD+ and nicotinamide guanine dinucleotide served as coenzymes. Initial-velocity and product inhibition studies suggested that the deamination of L-alanine proceeded through a sequential ordered binary-ternary mechanism. NAD+ bound first to the enzyme, followed by L-alanine, and the products were released in the order of ammonia, pyruvate, and NADH. The Km were 0.47 mM for L-alanine, 0.16 mM for NAD+, 0.22 mM for pyruvate, 0.067 mM for NADH, and 66.7 mM for ammonia. The Km for L-alanine was the smallest in the alanine dehydrogenases studied so far. The enzyme gene was cloned into Escherichia coli JM109 cells and the nucleotides were sequenced. The deduced amino acid sequence was very similar to that of the alanine dehydrogenase from Bacillus subtilis. However, the Enterobacter enzyme has no cysteine residue. In this respect, the Enterobacter enzyme is different from other alanine dehydrogenases.  相似文献   

8.
Stereospecific assignments are made for gamma- and delta-methylene hydrogens in a protein by means of estimation of vicinal 1H-1H spin-spin coupling constants from a short-mixing-time TOCSY experiment. 3J alpha beta coupling constants, as measured from a P.E. COSY map, are shown to be well correlated with alpha-beta cross-peak intensities of a short-mixing-time (10 ms) TOCSY map. The procedure is illustrated by application to a trypsin-inhibitor protein (M(r) approximately 7 Kd). Thus, gamma-methylene hydrogens of isoleucine residues have been stereospecifically assigned on the basis of 3J beta gamma 1H-1H coupling patterns and intraresidue cross-peak intensities in a NOESY map; gamma-hydrogens of other residues, such as lysine and arginine, have been stereospecifically assigned solely on the basis of cross-peak intensity patterns resulting from coupling of two beta-hydrogens to two gamma-hydrogens, and in conjunction with stereospecific assignments of beta-methylene hydrogens. However, intraresidue NOE intensities are needed if one or two pairs of coupling constants cannot be estimated because of cross peaks either overlapping or occurring proximal to the diagonal. The delta-methylene hydrogens have been stereospecifically assigned on the basis of coupling between two gamma-hydrogens and two delta-hydrogens, in combination with stereospecific assignments of gamma-hydrogens. Stereospecific assignments of side chains should contribute to the overall precision and accuracy of NMR-determined three-dimensional solution structures of proteins.  相似文献   

9.
A new framework for hemoglobin cooperativity was proposed by Ackers and colleagues on the basis of the hyper thermodynamic stability and deoxy (T) quaternary structure of one of diliganded deoxy-cyanomet hybrid hemoglobins, (alpha+CN-beta+CN-)(alpha beta), studied by hybridization of the equimolar mixture of deoxyhemoglobin and cyanomethemoglobin through a long (70-100 h) dimer exchange reaction [Daugherty et al. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 1110-1114]. Recently, we reported that the published hyperstability of (alpha+CN-beta+CN-)(alpha beta) is incorrect due to the occurrence of valency exchange between the heme sites of both parental hemoglobins during the long deoxy incubation [Shibayama et al. (1997) Biochemistry 36, 4375-4381]. We also noted a difficulty in maintaining both anaerobicity and excess free cyanide of the sample during the long incubation, which led to formation of cyanide-unbound aqometheme in the original deoxyhemoglobin resulting from the electron transfer to cyanometheme. This paper is a response to a recent argument against our work [Ackers et al. (1997) Biochemistry 36, 10822-10829]. Ackers et al. have claimed that no appreciable formation of aqomethemoglobin with their methods ensures their sample integrity, based on a supposition that our observed valency exchange may have occurred via aqometheme. In this paper, however, we demonstrate that appreciable (>27%) valency exchange really occurs between deoxy and cyanometheme sites during 72 h incubation under conditions where both anaerobicity and excess free cyanide of the sample solution are maintained by a continuous flow of humidified N2 with HCN. This confirms our view that previous experimental data on (alpha+CN-beta+CN-)(alpha beta) obtained by the long incubations should be subject to reexamination while our earlier estimation of a lower limit of free energy of (alpha+CN-beta+CN-)(alpha beta) (i.e., >/= -10.1 kcal/mol) by a rapid method (35 min) is still valid. We also suggest a possibility that the T quaternary structure of (alpha+CN-beta+CN-)(alpha beta) assigned by Ackers and colleagues using the long incubations is an artifact arising from the valency exchange. These results suggest that the putative mechanistic picture for hemoglobin cooperativity inferred from studies on deoxy-cyanomet hybrids is without foundation.  相似文献   

10.
The beta and gamma subunits of heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) form tightly associated complexes. To examine functional differences among the large number of possible combinations of unique beta and gamma subunits, we have synthesized and characterized beta gamma complexes containing gamma 5 and gamma 7, two widely distributed gamma subunits. When either gamma 5 or gamma 7 is expressed concurrently with beta 1 or beta 2 subunits in a baculovirus/Sf9 cell system, all four subunit complexes support pertussis toxin-catalyzed ADP-ribosylation of rGi alpha 1 (where "r" indicates recombinant), indicating formation of functional complexes. Each of the complexes was purified by subunit exchange chromatography, using the G203A mutant of rGi alpha 1 as the immobilized ligand. The purified preparations were compared with other recombinant beta gamma subunits, including beta 1 gamma 1 and beta 1 gamma 2, for their ability to modulate type I and II adenylyl cyclase activities; stimulate phosphoinositide-specific phospholipase C beta; support pertussis toxin-catalyzed ADP-ribosylation of rGi alpha 1 and Go alpha; and inhibit steady-state GTP hydrolysis catalyzed by Gs alpha, Go alpha, and myristoylated rGi alpha 2. The results emphasize the unique properties of beta 1 gamma 1. The properties of the complexes containing gamma 5 or gamma 7 were similar to each other and to those of beta 1 gamma 2.  相似文献   

11.
Pyridine nucleotide transhydrogenase (EC 1.6.1.1) from Escherichia coli was investigated with respect to the role of glutamic and aspartic acid residues reactive to N,N'-dicyclohexylcarbodiimide (DCCD) and potentially involved in the proton-pumping mechanism of the enzyme. The E. coli transhydrogenase consists of an alpha (510 residues) and a beta (462 residues) subunit. DCCD reacts with the enzyme to inhibit catalytic activity and proton pumping. This reagent modifies Asp alpha 232, Glu alpha 238, and Glu alpha 240 as well as amino acid residue(s) in the beta subunit. Using the cloned and overexpressed E. coli transhydrogenase genes (Clarke, D. M., and Bragg, P. D. (1985) J. Bacteriol. 162, 367-373), Asp alpha 232 and Glu alpha 238 were replaced independently by site-specific mutagenesis. In addition, Asp alpha 232, Glu alpha 238, and Glu alpha 240 were replaced to generate triple mutants. The specific catalytic activities of the mutant transhydrogenases alpha D232N, alpha D232E, alpha D232K, alpha D232H, alpha E238K, and alpha E238Q as well as of the triple mutants alpha D232N, alpha E238Q, alpha E240Q and alpha D232H, alpha E238Q, alpha E240Q were in the range of 40-90% of the wild-type activity. Proton-pumping activity was present in all mutants. Examination of the extent of subunit modification by [14C]DCCD revealed that the label was still incorporated into both alpha and beta subunits in the Asp alpha 232 mutants, but that the alpha subunit was not labeled in the triple mutants. Catalytic and proton-pumping activities were nearly insensitive to DCCD in the triple mutants. This suggests that loss of catalytic and proton-pumping activities is associated with modification of the aspartic and glutamic acid residues of the alpha subunit. In the presence of the substrate NADPH, the rate of modification of the beta subunit by [14C]DCCD was increased, and there was a greater extent of enzyme inactivation. By contrast, NADH and 3-acetylpyridine-NAD+ protected the catalytic activity of the transhydrogenase from inhibition by DCCD. The protection was particularly marked in the E238Q and E238K mutants. It is concluded that the Asp alpha 232, Glu alpha 238, and Glu alpha 240 residues are not essential for catalytic activity or proton pumping. The inactivation by DCCD is likely due to the introduction of a sterically hindering group that reacts with the identified acidic residues close to the NAD(H)-binding site.  相似文献   

12.
The pyruvate dehydrogenase complex (PDC) plays a key role in the anaerobic metabolism of the parasitic nematode Ascaris suum. Two isoforms of the alpha-subunit of pyruvate dehydrogenase (E1) have been identified: alpha I is most abundant in anaerobic adult muscle and alpha II in aerobic larvae. Both isoforms have been expressed as alpha 2 beta 2 tetramers with a muscle-specific beta-subunit, purified to apparent homogeneity, reconstituted with E1-deficient adult A. suum muscle PDC, and assayed for PDC and E1 kinase activity. Recombinant alpha II is a poor substrate for the adult E1 kinase, but its stoichiometry of phosphorylation/inactivation is similar to that reported for the human E1. Initially, inactivation parallels the incorporation of about 1 mol 32P/mol E1 and at maximal phosphorylation about 2.4 32P/mol E1 is incorporated. In contrast, recombinant alpha I (r alpha I) is phosphorylated rapidly, and substantially more phosphorylation accompanies inactivation. To examine this altered pattern of phosphorylation, the two phosphorylation sites in each E1 alpha subunit of the r alpha I (site 1 and site 2) were changed either individually or together from Ser to Ala by site-directed mutagenesis. Site 1 was phosphorylated more rapidly than site 2, but the phosphorylation of either site resulted in inactivation, and the phosphorylation of only a single E1 alpha subunit of the tetramer was necessary for inactivation. However, both E1 alpha subunits of the tetramer were phosphorylated, based on the incorporation of about 3.5 mol 32P/mol E1 at maximal phosphorylation and the altered mobility of most of the E1 alpha subunits during SDS-PAGE. These observations suggest that the regulation of both E1 isoforms is modified to maintain PDC activity during the transition to anaerobiosis.  相似文献   

13.
Amide hydrogen-deuterium exchange rates were measured in the PDZ2 domain from human phosphatase hPTPIE by 1H-15N heteronuclear NMR spectroscopy. Protection factors were calculated for the slowly exchanging hydrogens in both the free PDZ2 domain and its complex with an octapeptide peptide, R-N-E-I-Q-S-L-V, derived from the C-terminus of the Fas receptor. Aside from a short alpha-helical region alpha1 (amino acids A-45 to D-49), the pattern of highly protected amides correlated well with the presence of hydrogen bonds in elements of the secondary structure. Hydrogen-bonded amides showed relatively fast exchange rates with half-lives of less than 9 h at pD 7.6 and 8 degrees C. Protection factors, calculated as the ratio of theoretical (denatured) and observed exchange rates, showed less dispersion in maximal values than did the actual exchange rates. This behavior and the large pH dependence of the exchange rates suggest that amide exchange is close to the EX2 limit. In this limit, exchange of the most protected amides occurs through a global unfolding mechanism. The free energy of the unfolding calculated from the largest protection factors is 4.8 +/- 0.4 kcal/mol (1 cal = 4.184 J). This deltaG(o) closely matches the value measured by experiments with guanidine hydrochloride and fluorescence emission spectroscopy. Peptide binding to PDZ2 resulted in mostly global effects and stabilized the folded domain by 1.4 kcal/mol.  相似文献   

14.
Transducin serves as a mediator between the receptor protein, rhodopsin, and the effector protein, cGMP phosphodiesterase, in the visual process. Transducin is a protein composed of three polypeptides: T alpha, T beta, and T gamma, and acts as two functional units, the alpha-subunit and the beta gamma-complex. In the present study, I describe an efficient and fast method of purifying T alpha and T beta gamma using chromatography on a blue agarose column connected in tandem with an omega-amino octylagarose column. The recombination of T alpha and T beta gamma reconstitutes the functional heterotrimeric holoprotein, as demonstrated by the recovery of three native properties of transducin: 1) its capacity to exchange guanine nucleotide, 2) its GTP hydrolytic activity, and 3) the ADP-ribosylation of T alpha catalysed by pertussis toxin.  相似文献   

15.
Combined alteration of the pyruvate dehydrogenase complex and respiratory chain function is described in a 21 year-old male patient with overlapping MELAS (mitochondrial encephalomyopathy, lactic acidosis, and 'stroke-like' episodes) and Kearns-Sayre syndrome. Progressive external ophthalmoplegia, pigmentary retinopathy and right bundle branch block were present when he experienced the first 'stroke-like' episode at 18 years old. The A>G tRNALeu(UUR) point mutation at nucleotide 3243 of the mitochondrial DNA was predominant in muscle tissue (79%) and present, but at lower levels in fibroblasts (49%) and blood cells (37%). Biochemical analysis revealed diminished activities of pyruvate dehydrogenase (23%) and respiratory chain complexes I and IV (57%, respectively) in muscle, but normal activities in the fibroblasts. Immunochemical studies of the muscular pyruvate dehydrogenase components showed normal content of E1alpha, E1beta and E2 protein. Molecular screening of the E1alpha gene did not indicate a nuclear mutation. These observations suggest that mitochondrial DNA defects may be associated with altered nuclear encoded enzymes which are actively imported into mitochondria and constitute components of the mitochondrial matrix. Biochemical workup of mitochondrial disorders should not be restricted to the respiratory chain even if mitochondrial DNA mutations are present.  相似文献   

16.
The murine monoclonal antibody OPG2 is an excellent paradigm of natural RGD ligands and binds specifically to alpha IIb beta 3 integrin. A reactive Arg103-Tyr104-Asp105 (RYD) tripeptide is located in an extended loop, the third complementarity-determining region of the heavy chain (H3). When compared to other RGD ligands, the RYD tripeptide of OPG2 is unique, in that the side chains are fixed in a stable orientation that we have defined by x-ray crystallography. In this study, we express OPG2 H chain segments (Fd) and kappa chains as components of active, Fab heterodimers by coinfection of Spodoptera frugiperda cell lines with recombinant baculoviruses containing cDNA specific for each protein. Recombinant AP7 Fd segments are generated from the parent OPG2 Fd segments by replacement of Tyr104 with Gly, while recombinant AP7E Fd segments are produced from AP7 Fd segments, by exchange of Asp105 with Glu. Neither the free Fd segments nor the free kappa chains of OPG2 or AP7 can bind to alpha IIb beta 3. The AP7 Fab fragment, like the parent OPG2 Fab, binds strongly to purified alpha IIb beta 3 but weakly, if at all, to purified alpha V beta 3. The affinity of OPG2 and AP7 Fab fragments for gel-filtered platelets, whether nonstimulated or activated by 0.2 microM phorbol 12-myristate 13-acetate, is identical. As with other natural RGD ligands, the binding of recombinant OPG2 Fab or AP7 Fab fragments to purified alpha IIb beta 3 or to gel-filtered platelets is completely inhibited by the peptide RGDW or by addition of EDTA, AP7E Fab fragments do not bind at all to either purified alpha IIb beta 3 or platelets. Our results demonstrate, for the first time within a natural protein ligand, that the tripeptides RGD and RYD exhibit equivalent binding capacity and specificity for the integrin alpha IIb beta 3.  相似文献   

17.
Agonist-bound heptahelical receptors activate heterotrimeric G proteins by catalyzing exchange of GDP for GTP on their alpha subunits. In search of an approximation of the receptor-alpha subunit complex, we have considered the properties of A326S Gialpha1, a mutation discovered originally in Gsalpha (Iiri, T., Herzmark, P., Nakamoto, J. M., Van Dop, C., and Bourne, H. R. (1994) Nature 371, 164-168) that mimics the effect of receptor on nucleotide exchange. The mutation accelerates dissociation of GDP from the alphai1beta1gamma2 heterotrimer by 250-fold. Nevertheless, affinity of mutant Gialpha1 for GTPgammaS is high in the presence of Mg2+, and the mutation has no effect on the intrinsic GTPase activity of the alpha subunit. The mutation also uncouples two activities of betagamma: stabilization of the GDP-bound alpha subunit (which is retained) and retardation of GDP dissociation from the heterotrimer (which is lost). For wild-type and mutant Gialpha1, beta gamma prevents irreversible inactivation of the alpha subunit at 30 degreesC. However, the mutation accelerates irreversible inactivation of alpha at 37 degreesC despite the presence of beta gamma. Structurally, the mutation weakens affinity for GTPgammaS by steric crowding: a 2-fold increase in the number of close contacts between the protein and the purine ring of the nucleotide. By contrast, we observe no differences in structure at the GDP binding site between wild-type heterotrimers and those containing A326S Gialpha1. However, the GDP binding site is only partially occupied in crystals of G protein heterotrimers containing A326S Gialpha1. In contrast to original speculations about the structural correlates of receptor-catalyzed nucleotide exchange, rapid dissociation of GDP can be observed in the absence of substantial structural alteration of a Galpha subunit in the GDP-bound state.  相似文献   

18.
Genes encoding the dihydrolipoyl acetyltransferase (E2) and dihydrolipoyl dehydrogenase (E3) components of the pyruvate dehydrogenase (PDH) multienzyme complex from Bacillus stearothermophilus were overexpressed in Escherichia coli. The E2 component was purified as a large soluble aggregate (molecular mass > 1 x 10(6) Da) with the characteristic 532 symmetry of an icosahedral (60-mer) structure, and the E3 as a homodimer with a molecular mass of 110 kDa. The recombinant E2 component in vitro was capable of binding either 60 E3(alpha2) dimers or 60 heterotetramers (alpha2beta2) of the pyruvate decarboxylase (E1) component (also the product of B. stearothermophilus genes overexpressed in E. coli). Assembling the E2 polypeptide chain into the icosahedral E2 core did not impose any restriction on the binding of E1 or E3 to the peripheral subunit-binding domain in each E2 chain. This has important consequences for the stoichiometry of the assembled complex in vivo. The lipoyl domain of the recombinant E2 protein was found to be unlipoylated, but it could be correctly post-translationally modified in vitro using a recombinant lipoate protein ligase from E. coli. The lipoylated E2 component was able to bind recombinant E1 and E3 components in vitro to generate a PDH complex with a catalytic activity comparable with that of the wild-type enzyme. Reversible unfolding of the recombinant E2 and E3 components in 6 M guanidine hydrochloride was possible in the absence of chaperonins, with recoveries of enzymic activities of 95% and 85%, respectively. However, only 26% of the E1 enzyme activity was recovered under the same conditions as a result of irreversible denaturation of both E1alpha and E1beta. This represents the first complete post-translational modification and assembly of a fully active PDH complex from recombinant proteins in vitro.  相似文献   

19.
A new method based on protein fragmentation and directly coupled microbore high-performance liquid chromatography-fast atom bombardment mass spectrometry (HPLC-FABMS) is described for determining the rates at which peptide amide hydrogens in proteins undergo isotopic exchange. Horse heart cytochrome c was incubated in D2O as a function of time and temperature to effect isotopic exchange, transferred into slow exchange conditions (pH 2-3, 0 degrees C), and fragmented with pepsin. The number of peptide amide deuterons present in the proteolytic peptides was deduced from their molecular weights, which were determined following analysis of the digest by HPLC-FABMS. The present results demonstrate that the exchange rates of amide hydrogens in cytochrome c range from very rapid (k > 140 h-1) to very slow (k < 0.002 h-1). The deuterium content of specific segments of the protein was determined as a function of incubation temperature and used to indicate participation of these segments in conformational changes associated with heating of cytochrome c. For the present HPLC-FABMS system, approximately 5 nmol of protein were used for each determination. Results of this investigation indicate that the combination of protein fragmentation and HPLC-FABMS is relatively free of constraints associated with other analytical methods used for this purpose and may be a general method for determining hydrogen exchange rates in specific segments of proteins.  相似文献   

20.
In an attempt to restore pyruvate dehydrogenase complex (PDHC), expression vectors carrying wildtype E1 alpha cDNA (pRAWT) or 1162ins-mutant (pRA1162) were introduced into human lymphoblastoid cells which had a 4-bp insertion after nucleotide 1162 (1162ins) of E1 alpha cDNA, 28% of normal PDHC activity, and undetectable levels of both E1 alpha and E1 beta proteins. The amount of E1 alpha mRNA transcribed from the introduced cDNA was approximately 25 times greater than that transcribed from the endogenous gene. The PDHC activity of pRAWT-transformed cells increased to the normal level whereas this activity increased to 55% of the control in pRA1162-transformed cells. Mitochondria from pRAWT-transformed cells contained normal amounts of both the E1 alpha and the E1 beta subunits. These results suggest that the three C-terminal amino acids of E1 alpha, which were absent from 1162ins-mutant protein, may be important for the structural integrity of E1 and that a large amount of normal subunit, compared to the endogenous mutant enzyme, must be expressed to restore a multienzyme complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号