首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents the experimental results of a research carried out on the strength and permeability related properties of high performance concretes made with binary and ternary cementitious blends of fly ash (FA) and metakaolin (MK). The replacement ratios for FA were 10% and 20% by weight of Portland cement and those for MK were 5% and 10%. Compressive strength, chloride permeability, water sorptivity, and water absorption properties of concretes were obtained in this study for different testing ages up to 90 days. The influences of fly ash, metakaolin, and testing age on the properties of concretes have been identified using the analysis of variance. The statistical based regression models and the response surface method with the backward stepwise techniques were employed in the multi-objective optimization analysis. That is carried out by maximizing compressive strength while minimizing chloride permeability, water sorptivity, and water absorption. It was observed that fly ash and especially metakaolin were very effective on the aforementioned properties of the concretes, depending mainly on replacement levels and duration of curing. The results indicated that the ternary use of fly ash and metakaolin with the approximate cement replacement values of 13.3% and 10% respectively has provided the best results for the testing age of 90 days, when the optimized strength and permeability based durability properties of the concretes are concerned.  相似文献   

2.
This paper reports an investigation in which the performance of plain and metakaolin (MK)-modified concretes were studied under two different curing regimes. The purpose of this study is to evaluate the effectiveness of MK in enhancing the strength and permeation properties of concrete. MK was used to replace 0–20% of Portland cement by weight in concrete with two water-binder (w/b) ratios of 0.35 and 0.55. The change in compressive strength, sorptivity, and chloride ingress with age at all cement replacement levels under both air and water curing are compared with those of the control concrete. The results indicated that the inclusion of MK greatly reduced sorptivity and chloride permeability of concrete in varying magnitudes, depending mainly on replacement level of MK, w/b ratio, curing condition, and chloride exposure period. It was found that under the inadequate or poor curing, MK-modified concretes suffered a more severe loss of compressive strength and permeability-related durability than the plain concretes.  相似文献   

3.
The paper presented herein investigates the effects of using supplementary cementitious materials in binary, ternary, and quaternary blends on the fresh and hardened properties of self-compacting concretes (SCCs). A total of 22 concrete mixtures were designed having a constant water/binder ratio of 0.32 and total binder content of 550 kg/m3. The control mixture contained only portland cement (PC) as the binder while the remaining mixtures incorporated binary, ternary, and quaternary cementitious blends of PC, fly ash (FA), ground granulated blast furnace slag (GGBFS), and silica fume (SF). After mixing, the fresh properties of the concretes were tested for slump flow time, L-box height ratio, V-funnel flow time, setting time, and viscosity. Moreover, compressive strength, ultrasonic pulse velocity, and electrical resistivity of the hardened concretes were measured. Test results have revealed that incorporating the mineral admixtures improved the fresh properties and rheology of the concrete mixtures. The compressive strength and electrical resistivity of the concretes with SF and GGBFS were much higher than those of the control concrete.  相似文献   

4.
This study reports the finding of an experimental study carried out on the durability related properties of the lightweight concretes (LWCs) including either cold bonded (CB) or sintered (S) fly ash aggregates. CB aggregate was produced with cold bonding pelletization of class F fly ash (FA) and Portland cement (PC) while S aggregate was produced by sintering the fresh aggregate pellets manufactured from FA and bentonite (BN). Two concrete series with water-to-binder (w/b) ratios of 0.35 and 0.55 were designed. Moreover, silica fume (SF) with 10% replacement level was also utilized for the purpose of comparing the performances of LWCs with and without ultrafine SF. The durability properties of concretes composed of CB and S aggregates were evaluated in terms of water sorptivity, rapid chloride ion permeability, gas permeability, and accelerated corrosion testing after 28 days of water curing period. The compressive strength test was also applied to observe the strength level at the same age. The results revealed that S aggregate containing LWCs had relatively better performance than LWCs with CB aggregates. Moreover, the incorporation of SF provided further enhancement in permeability and corrosion resistance of the concretes.  相似文献   

5.
An experimental investigation was conducted to evaluate the performance of metakaolin (MK) concrete at elevated temperatures up to 800 °C. Eight normal and high strength concrete (HSC) mixes incorporating 0%, 5%, 10% and 20% MK were prepared. The residual compressive strength, chloride-ion penetration, porosity and average pore sizes were measured and compared with silica fume (SF), fly ash (FA) and pure ordinary Portland cement (OPC) concretes. It was found that after an increase in compressive strength at 200 °C, the MK concrete suffered a more severe loss of compressive strength and permeability-related durability than the corresponding SF, FA and OPC concretes at higher temperatures. Explosive spalling was observed in both normal and high strength MK concretes and the frequency increased with higher MK contents.  相似文献   

6.
This paper presents the effect of air curing, water curing and steam curing on the compressive strength of Self Compacting Concrete (SCC). For experimental study, SCC is produced with using silica fume (SF) instead of cement by weight, by the ratios of 5%, 10% and 15%, and fly ash (FA) with the ratios of 25%, 40% and 55%. It is observed that mineral admixtures have positive effects on the self settlement properties. The highest compressive strength was observed in the concrete specimens with using 15% SF and for 28 days water curing. Air curing caused compressive strength losses in all groups. Relative strengths of concretes with mineral admixtures were determined higher than concretes without admixtures at steam curing conditions.  相似文献   

7.
In this study, plain, silica fume and fly ash cement concrete specimens prepared with varying water to cementitious materials ratio and cementitious materials content were tested for compressive strength, water permeability, chloride permeability, and coefficient of chloride diffusion after 28 days of water curing. The data so developed were statistically analyzed to develop correlations between the compressive strength and the selected durability indices of concrete. Very good correlations were noted between the compressive strength and the selected durability indices, particularly chloride permeability and coefficient of chloride diffusion, irrespective of the mix design parameters. However, these correlations were observed to be dependent on the type of cement.  相似文献   

8.
In this study, the effect of incorporation of silica fume in enhancing strength development rate and durability characteristics of binary concretes containing a low reactivity slag has been investigated. Binary concretes studied included mixes containing slag at cement replacement levels of 15%, 30% and 50% and mixes containing silica fume at cement replacement levels of 2.5%, 5%, 7.5% and 10%. Ternary concretes included combinations of silica fume and slag at various cement replacement levels. The w/b ratio and total cementitious materials content were kept constant for all mixes at 0.38 and 420 kg/m3 respectively. Concrete mixes were evaluated for compressive strength, electrical resistance, chloride permeability (ASTM C1202 RCPT test) and chloride migration (AASHTO TP64 RCMT test), at various ages up to 180 days.The results show that simultaneous use of silica fume has only a moderate effect in improving the slow rate of strength gain of binary mixes containing low reactivity slag. However it improves their durability considerably. Using appropriate combination of low reactivity slag and silica fume, it is possible to obtain ternary mixes with 28 day strength comparable to the control mix and improve durability particularly in the long term. Ternary mixes also have the added advantage of reduced water demand.  相似文献   

9.
This study reports the findings of an experimental study carried out on transport properties of the concretes modified with different calcined non purified kaolins (CK) and commercially available high reactivity metakaolin (MK). CK used in this study were obtained by calcining impure ground kaolins from four different quarries located on kaolin beds of different morphological and geological formations in Turkey. However, commercially available MK produced by thermal treatment of high purity kaolin from Czech Republic was used as reference material. In concrete mix design, the cement was replaced with 5, 10, 15, and 20 % by weight of CK or MK. The gas permeability, water permeability, water sorptivity, and chloride permeability tests were performed at the end of 28 and 90 days of curing periods. The results indicated that the concretes incorporated with different types of calcined kaolins had comparable performance in permeability with MK modified concrete, depending mainly on the type and amount of the mineral admixture used. Moreover, all of the concretes incorporation MK or CK had considerably better permeability than plain concrete regardless of the replacement level.  相似文献   

10.
The present study investigated the effects of mesoporous amorphous rice husk ash (RHA) on compressive strength, portlandite content, autogenous shrinkage and internal relative humidity (RH) of ultra-high performance concretes (UHPCs) with and without ground granulated blast-furnace slag (GGBS) under different treatments. The results were compared with those of UHPCs containing silica fume (SF). Because of the mesoporous structure, RHA can absorb an amount of aqueous phase to decrease the free water content and to supply thereafter water for further hydrations of cementitious materials. Hence, compressive strength of RHA-blended samples is enhanced. The highly water absorbing RHA delays and slows down the decrease in the internal RH (self-desiccation) of UHPCs, and hence strongly mitigates autogenous shrinkage of UHPCs compared to SF. The combination of GGBS and RHA or SF improves the properties of UHPC. These results suggest that RHA acts as both highly pozzolanic admixture and internal curing agent in UHPC.  相似文献   

11.
The paper presents a laboratory study on the influence of two mineral admixtures, silica fume (SF) and fly ash (FA), on the properties of superplasticised high-performance concrete. Assessment of the concrete mixes was based on short- and long-term testing techniques used for the purpose of designing and controlling the quality of high-performance concrete. These include compressive strength, porosity, oxygen permeability, oxygen diffusion and chloride migration. Measurements were carried out after curing at 20% and 65% relative humidity up to the age of 1 yr. The results, in general, showed that mineral admixtures improved the properties of high-performance concretes, but at different rates depending on the binder type. While SF contributed to both short- and long-term properties of concrete, FA required a relatively longer time to get its beneficial effect. In the long term, both mineral admixtures slightly increased compressive strength by about 10%, but contributed more to the improvement of transport properties of concretes.  相似文献   

12.
In this study, multi-objective mix proportioning optimization of high performance concretes was performed. For this purpose, five factors; w/b ratio, total binder content (b), silica fume (SF) replacement ratio, fine to total aggregate ratio (s/a), and amount of superplasticizer (SP), were investigated to determine their effects on the transport and mechanical properties of high performance concrete. Slump, compressive strength, splitting tensile strength, modulus of elasticity, ultrasonic pulse velocity, water absorption, water penetration, and chloride ion penetration of mixtures were measured. Then, using mix proportion variables, mathematical formulations were obtained for the slump, mechanical and permeation properties via regression technique. To find out the best possible mix proportions for the simultaneous minimization of water absorption, water penetration and chloride ion penetration, a multi-objective optimization problem was defined and solved. In order to verify that the theoretically determined optimum mix proportions really minimized the transport properties of high performance concretes, an experimental study was conducted and it was observed that theoretically proposed optimum mix proportions can satisfy expected minimum permeation properties.  相似文献   

13.
An experimental study was conducted to investigate the effects of using binary, ternary, and quaternary cementitious blends of portland cement (PC), fly ash (FA), ground granulated blast furnace slag (GBS), silica fume (SF), and metakaolin (MK) on initial and final setting times of self-compacting concretes (SCCs). For this purpose, a total of 65 SCC mixtures were prepared at two different water binder ratios. Furthermore, based on the experimental results, neural network (NN) model-based explicit formulations were developed to predict the initial and final setting times of SCCs in terms of the amount of concrete constituents, namely mixing water, PC, FA, GBS, SF, MK, fine (fa) and coarse (ca) aggregates, and superplasticizer (SP). The test results have revealed that the mineral admixtures were very effective on the initial and final setting times of SCCs. Besides, it was found that the model developed by using NN seemed to have a high prediction capability of initial and final setting times of SCCs.  相似文献   

14.
This research was primarily conducted to verify the presence of synergistic effects in ternary cementitious systems containing portland cement (OPC), class C fly ash (FA) and silica fume (SF). A subsequent objective of the study was to quantify the magnitude of the synergy and to determine its source. For a ternary mixture containing 20% FA and 5% SF by mass, the synergistic effect was observed mostly at later ages (7 days onward) and it resulted in an increased compressive strength and resistance to chloride ion penetration as well as a reduced rate of water absorption (sorptivity) compared to predictions based on individual effects of FA and SF in respective binary systems. The observed synergy was attributed to both chemical and physical effects. The chemical effect manifested itself in the form of an increased amount of hydration products. The physical effect associated with packing density was, somewhat contrary to general belief, not due to an optimized particle size distribution of the binder components of the ternary cementitious system. Instead, it was the result of smaller initial inter-particle spacing caused by lower specific gravities of both FA and SF which, in turn, led to a lower volumetric w/cm. If the mixture design was adjusted to account for these differences, the physical effect would be diminished.  相似文献   

15.
Natural zeolite, a type of frame-structured hydrated aluminosilicate mineral, is used abundantly as a type of natural pozzolanic material in some regions of the world. In this work, the effectiveness of a locally quarried zeolite in enhancing mechanical and durability properties of concrete is evaluated and is also compared with other pozzolanic admixtures. The experimental tests included three parts: In the first part, the pozzolanic reactivity of natural zeolite and silica fume were examined by a thermogravimetric method. In this case, the results indicated that natural zeolite was not as reactive as silica fume but it showed a good pozzolanic reactivity. In the second part, zeolite and silica fume were substituted for cement in different proportions in concrete mixtures, and several physical and durability tests of concrete were performed. These experimental tests included slump, compressive strength, water absorption, oxygen permeability, chloride diffusion, and electrical resistivity of concrete. Based on these results, the performance of concretes containing different contents of zeolite improved and even were comparable to or better than that of concretes prepared with silica fume replacements in some cases. Finally, a comparative study on effect of zeolite and fly ash on limiting ASR expansion of mortar was performed according to ASTM C 1260 and ASTM C 1567. Expansion tests on mortar prisms showed that zeolite is as effective as fly ash to prevent deleterious expansion due to ASR.  相似文献   

16.
Randomly oriented short fibers have been shown to increase tensile strength and retard crack propagation of cement based materials such as fiber-reinforced mortars for diverse applications, especially in aggressive environments. In the case of reinforced concrete, it is very important to produce a “high quality” cover in order to prevent corrosion of the rebars. In order to obtain a high performance material the use of a pozzolan is advisable because low permeability is achieved. The objective of this research was to determine the effect of pozzolans such as silica fume (SF), fly ash (FA), and metakaolin (MK) on the properties of fiber-reinforced mortars. Different types of natural and synthetic fibers were used. A superplasticizer was used to keep the same workability as that of the control mortar. Results of the mechanical and durability properties of the fiber-reinforced mortars are reported. The results show that a loss of resistance due to embedding fibers in mortar is compensated for by the increase in strength caused by silica fume or metakaolin additions to the mortar. The addition of 15% of SF or MK produces an improvement of up to 20% and 68%, respectively, when compared with those mortars without addition. There is a significant decrease in the coefficient of capillary absorption and chloride penetration when a highly pozzolanic material is incorporated into the matrix. In general, these materials, especially SF and MK, improve the mechanical performance and the durability of fiber-reinforced materials, especially those reinforced with steel, glass or sisal fibers. The fly ash addition had a different performance, which could be attributed to its low degree of pozzolanicity.  相似文献   

17.
Effect of metakaolin on the near surface characteristics of concrete   总被引:1,自引:0,他引:1  
Results on an investigation dealing with the effect of metakaolin (MK) on the near surface characteristics of concrete are presented in this paper. A control concrete having cement content 450 kg/m3 and w/c of 0.45 was designed. Cement was replaced with three percentages (5, 10, and 15%) of metakaolin weight. Tests were conducted for initial surface absorption, sorptivity, water absorption and compressive strength at the ages of 35, 56, and 84 days. Test results indicated that with the increase in MK content from 5 to 15%, there was a decrease in the initial surface absorption, decrease in the sorptivity till 10% metakaolin replacement. But at 15% MK replacement an increase in sorptivity was observed. All mixtures showed low water absorption characteristic i.e. less than 10%. Compressive strength shared an inverse relation with sorptivity. Higher MK replacements of 15% are not helpful in improving inner core durability, even though it helps in improving surface durability characteristics.  相似文献   

18.
The study presented herein has been carried out in order to investigate the strength development and chloride permeability characteristics of plain and rubberized concretes with and without silica fume. For this purpose, two types of tire rubber, namely crumb rubber and tire chips, were used as fine and coarse aggregate, respectively, in the production of rubberized concrete mixtures which were obtained by partially replacing the aggregate with rubber. Two water-cementitious material (w/cm) ratios (0.60 and 0.40), three moist curing periods (3, 7, and 28 days), four designated rubber contents (0, 5, 15, and 25 by total aggregate volume), two silica fume content (0 and 10% by weight of cement), and five different testing ages (3, 7, 28, 56, and 90 days) were considered as experimental parameters. The results indicated that for a given w/cm ratio and moist curing period, the use of rubber significantly aggravated the chloride ion penetration through concrete but the degree of the rate of the increment of the chloride permeability depended on the amount of the rubber used. When the curing period was extended from 3 to 28 days, the reduction in the magnitude of chloride penetration depth was notably higher for the rubberized concretes, even at a rubber content of as high as 25%. It was also observed that silica fume may be considered as a remedy to enhance the chloride penetration resistance of the rubberized concretes.  相似文献   

19.
Concretes containing a coarse limestone powder (median particle size of 72 μm) as a partial cement replacement material are proportioned so as to attain similar 7-day compressive strengths as a 0.40 water-to-cement ratio (w/c) control concrete. The moisture and chloride ion transport behavior of the concretes containing limestone powder with and without small amounts of silica fume are evaluated in this paper. It is shown that a 15% cement replacement with coarse limestone powder at a water-to-powder ratio (w/p) of 0.34 results in concretes of better or comparable compressive strengths, porosities, moisture transport parameters (overall moisture intake, and sorptivity), and rapid chloride permeability (RCP) as that of a 0.37 w/c plain concrete. However, the non-steady state migration coefficients (Dnssm) of concretes containing limestone powder are found to be higher than those of plain concretes of even higher w/c. A microstructural parameter ( – product of porosity and pore connectivity) is used to relate the pore structure to the moisture and ionic transport. Relationships between and the moisture and ionic transport parameters are provided, which shed light on the combined influence of w/p and a highly reactive cement replacement material such as silica fume on the different transport properties of concretes containing a coarse limestone powder.  相似文献   

20.
The benefits of limestone as a partial replacement for Portland Cement (PC) are well established. Economic and environmental advantages by reducing CO2 emissions are well known. The paper describes the effect of various amounts of limestone on compressive strength, water penetration, sorptivity, electrical resistivity and rapid chloride permeability on concretes produced by using a combination of PC and limestone at 28, 90 and 180 days. The percentages of limestone that replace PC in this research are 0%, 5%, 10%, 15% and 20% by mass. The water/(clinker + limestone) or (w/b) ratios are 0.37, 0.45 and 0.55 having a constant total binder content of 350 kg/m3. Generally, results show that the Portland limestone cement (PLC) concretes having up to 10% limestone provide competitive properties with PC concretes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号