首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, nine different types of concrete were adopted: normal concrete (NC) with low slump (68 mm) and eight types of self-compacting concrete (SCC) in which cement was partially replaced by four kinds of replacements (25%, 30%, 35% and 40%) of class F fly ash (FA) and by four kinds of replacements (5%, 10%, 15% and 20%) of silica fume (SF). The main objective of this research was to evaluate the effect of different types and dosages of mineral additions on the moment capacities and stiffnesses of the beam specimens and the bond strength of tension lap-spliced bars embedded in NC and self-compacting concretes (SCCs). To achieve these objectives, 27 full-scale beam specimens (2000 × 300 × 200 mm) were tested. In all beam specimens, 20 mm reinforcing bars were used with a 300 mm splice length as tension reinforcement. The variable used was the amount of FA and SF incorporated into SCC. Each beam was designed with bars spliced in a constant moment region at midspan. The splice length was selected so that bars would fail in bond, splitting the concrete cover in the splice region, before reaching the yield point. Moreover, bond strength of SCC beams was compared to that of NC beams of the same dimensions, steel configuration and approximately the same water-to-cement ratio. In conclusion, the beam specimens produced from SCC containing 5% SF and 30% FA had the highest normalized bond strength with 1.07 whilst the replacements of Portland cement (PC) by an equal weight of FA or SF in SCC had generally the positive effect on the bond strength of reinforcing bar regardless of the dosage of mineral admixture compared to the specimen with NC indicating that SCC due to its superior filling capability more effectively covered the reinforcements and the grain-size distribution and particle packing improved ensuring greater cohesiveness. Moreover, the beam specimens produced from SCC with SF had the greatest stiffness compared to other all beams as result of the improvement of concrete pore structure due to the pozzolanic activity and the filler effect of high fineness silica fume.  相似文献   

2.
针对内嵌碳纤维增强塑料筋加固宽缺口混凝土梁体系,对碳纤维增强塑料筋、胶粘剂及混凝土三种介质两个界面的内力进行了力学解析分析,分析研究表明:剪应力是碳纤维增强塑料筋-胶粘剂-混凝土界面的粘结应力的主体,由内嵌加固宽缺口梁破坏试验可直接获取界面的剥离承载力;碳纤维增强塑料筋的受力相当于外表受到剪应力和正应力的圆柱体,剪应力靠胶结力提供,筋表面的平均剪应力可以通过宽缺口处外露部分的应变片实测得到,且与试验结果吻合较好,筋表面正应力的作用可以忽略;碳纤维筋横截面上的正应力在筋的长度方向成幂指数分布,沿筋截面径向分布不均匀,这导致其横截面中心的变形滞后于筋边缘的变形;槽内胶凝固后的内聚体是一个断面内圆外方的柱体,可以假定为是近似的厚壁圆筒,胶内聚体内的切向和径向应力对胶内聚体的剪切变形几乎没有影响;界面剥离破坏在比邻界面的混凝土中发生,因此混凝土强度将显著影响界面粘结性能与剥离承载力。  相似文献   

3.
A stochastic analysis is developed to assess the temporal and spatial variability of pitting corrosion on the reliability of corroding reinforced concrete (RC) structures. The structure considered herein is a singly reinforced RC beam with Y16 or Y27 reinforcing bars. Experimental data obtained from corrosion tests are used to characterise the probability distribution of pit depth. The RC beam is discretised into a series of small elements and maximum pit depths are generated for each reinforcing steel bar in each element. The loss of cross-sectional area, reduction in yield strength and reduction in flexural resistance are then inferred. The analysis considers various member spans, loading ratios, bar diameters and numbers of bars in a given cross-section, and moment diagrams. It was found that the maximum corrosion loss in a reinforcing bar conditional on beam collapse was no more than 16%. The probabilities of failure considering spatial variability of pitting corrosion were up to 200% higher than probabilities of failure obtained from a non-spatial analysis after 50 years of corrosion. This shows the importance of considering spatial variability in a structural reliability analysis for deteriorating structures, particularly for corroding RC beams in flexure.  相似文献   

4.
赵卫平  朱彬荣 《工程力学》2017,34(4):177-186
通过自行设计的装置测量了高温后粘结问题中的化学胶结力和摩擦系数,得出了它们随温度经历的变化规律。利用测得的基础参数定义了钢筋与混凝土界面的弹塑性库仑摩擦准则并将其植入有限元模型;采用面-面接触的接触单元模拟混凝土与钢筋界面的力学行为。模型通过对钢筋肋的显式离散实现了钢筋肋与混凝土间机械咬合作用的模拟。数值结果和试验数据的对比表明,该文提出的模型可以较好的模拟高温后带肋钢筋和混凝土之间的粘结滑移。最后,利用有限元模型对400℃温度经历拔出过程中的应力分布及裂缝的扩展进行了细致的研究。  相似文献   

5.
王磊  李威  陈爽  毛亚东  王恺 《复合材料学报》2018,35(12):3458-3465
开展了30℃海水浸泡条件下玻璃纤维增强树脂基复合材料(GFRP)筋、碳纤维增强树脂基复合材料(CFRP)筋与珊瑚混凝土粘结性能的试验研究,分析了纤维增强树脂基复合材料(FRP)筋-珊瑚混凝土粘结滑移曲线特征、破坏形态及粘结强度变化。试验结果表明,海水浸泡后FRP筋力学性能和粘结性能均表现为不同程度的降低。随浸泡时间增加,GFRP筋表层树脂与纤维间的孔隙率明显增大,并逐渐出现脱粘现象,纤维本身遭受到侵蚀,而CFRP筋仅表面基体有少许损伤,其耐久性明显优于GFRP筋;FRP筋-珊瑚混凝土粘结强度呈现出先增加后减小的趋势,且后期下降速率逐渐变小,部分GFRP筋-珊瑚混凝土试件的破坏模式逐渐由筋被拔出转变为筋材断裂;增加保护层厚度能有效地减缓海水对GFRP筋的侵蚀,有利于保持GFRP筋-珊瑚混凝土间的粘结性能。  相似文献   

6.
Six high-strength concrete beam specimens reinforced with fiber-reinforced polymer (FRP) bars were constructed and tested. Three of the beams were reinforced with carbon FRP (CFRP) bars and the other three beams were reinforced with glass FRP (GFRP) bars as flexural reinforcements. Steel fibers and polyolefin synthetic fibers were used as reinforcing discrete fibers. An investigation was performed on the influence of the addition of fibers on load-carrying capacity, cracking response, and ductility. In addition, the test results were compared with the predictions for the ultimate flexural moment. The addition of fibers increased the first-cracking load, ultimate flexural strength, and ductility, and also mitigated the large crack width of the FRP bar-reinforced concrete beams.  相似文献   

7.
Geopolymer concrete (GPC) is an emerging construction material that uses a by-product material such as fly ash as a complete substitute for cement. This paper evaluates the bond strength of fly ash based geopolymer concrete with reinforcing steel. Pull-out test in accordance with the ASTM A944 Standard was carried out on 24 geopolymer concrete and 24 ordinary Portland cement (OPC) concrete beam-end specimens, and the bond strengths of the two types of concrete were compared. The compressive strength of geopolymer concrete varied from 25 to 39 MPa. The other test parameters were concrete cover and bar diameter. The reinforcing steel was 20 mm and 24 mm diameter 500 MPa steel deformed bars. The concrete cover to bar diameter ratio varied from 1.71 to 3.62. Failure occurred with the splitting of concrete in the region bonded with the steel bar, in both geopolymer and OPC concrete specimens. Comparison of the test results shows that geopolymer concrete has higher bond strength than OPC concrete. This is because of the higher splitting tensile strength of geopolymer concrete than of OPC concrete of the same compressive strength. A comparison between the splitting tensile strengths of OPC and geopolymer concrete of compressive strengths ranging from 25 to 89 MPa shows that geopolymer concrete has higher splitting tensile strength than OPC concrete. This suggests that the existing analytical expressions for bond strength of OPC concrete can be conservatively used for calculation of bond strength of geopolymer concrete with reinforcing steel.  相似文献   

8.
This paper describes pullout test results on deformed reinforcing bars in natural and recycled fine aggregate (RFA) concrete. The effects of bar location and RFA grade on bond strength between reinforcing bar and recycled aggregate concrete (RAC) were evaluated through the experimental program. A total of 150 pullout specimens were fabricated for the experiment. Two reinforcing bar orientations were considered with respect to the casting direction; vertical bars and horizontal bars, the latter of which was prepared to evaluate top-bar effect. Considered variables included four RFA replacement ratios (RFArs), two water-absorption grades (RFA-A: 5.83%, RFA-B: 7.95%) of RFA and three reinforcing bar locations (75, 225 and 375 mm height from the bottom of the casting mold). In addition, to evaluate the thermal and aging effect on bond behavior between the reinforcing bar and RFA concrete, some parts of pullout specimens had exposed to rapid freeze–thaw environment or been cured at air during 28 or 730 days. Test results demonstrated that bond strength does not seem to be affected by the RFAr for higher RFA grades (RFA-A), at least up to 60% RFAr. In contrast, the RAC including lower RFA grade (RFA-B) showed clear decreases in bond strength with increasing RFAr, similar to the trend observed for compressive strength. For horizontal pullout specimens, RFA concrete specimens showed higher bond strength gap between top and bottom bars than natural aggregate concrete (NAC) specimens. Bond strengths of the horizontally cast pullout specimens were affected by the flowability of concrete rather than the RFAr or RFA grade. No noticeable degradation occurred during freeze–thaw cycling of the RAC specimens, indicating that the RFA used in this study is appropriate for use in freeze–thaw environments.  相似文献   

9.
伍凯  刘晓艺  陈峰  林诗琪  徐超 《工程力学》2021,38(2):110-121
为了解决型钢混凝土结构中型钢与钢筋相互干扰、混凝土浇筑困难等施工难题,将型钢混凝土结构中的钢筋笼完全或部分替换成钢纤维,形成了型钢-钢纤维混凝土组合结构.完成了36个试件的推出试验和13个试件的四点弯试验,分别研究了型钢-钢纤维混凝土组合结构在轴心力与弯矩作用下的界面失效,分析了不同荷载条件下的内力传递与破坏机理.钢纤...  相似文献   

10.
The paper reports a study on the shear resistance of concrete beams reinforced with mild steel bars that are milled from scrap metal such as old vehicle parts and obsolete machinery. It has been previously reported that because the chemical compositions of carbon, sulphur and phosphorus in these reinforcing steel bars exceed the maximum allowable limits, the characteristic tensile strengths are too high and ductility too low for standard mild steel. Concrete beams reinforced with such bars to resist flexural tensile and shear stresses were tested under a two-point loading system to provide a central constant moment region and outer shear spans. Tested beams exhibited little deflection and very low ductility prior to collapse. Experimental failure loads for the beams averaged 123% of the theoretical failure load, which was generally governed by either shear or yielding of the tension steel. Shear failure was mostly initiated by diagonal tension cracks, followed by either crushing of the concrete, or splitting of the concrete over the longitudinal tensile bars near the supports. Failure of the beams was brittle and the post-cracking strain energy absorption averaged 357.9 Nm. At failure the maximum crack width in the beams ranged from 1.12 to 5.0 mm, the largest sizes forming in the diagonal shear cracks.  相似文献   

11.
The results of experimental investigation of the local bond stress-slip response of steel bars embedded in confined concrete and subjected to cyclic loading are presented. Different types of confinement and their effect on the bond stress-slip response were evaluated and compared. These included internal confinement by ordinary transverse steel ties or steel fiber reinforcement, and external confinement by fiber reinforced polymer (FRP) composites. Beam specimens with spliced reinforcement at midspan were tested. The test parameters included the size of the steel bars, the ratio of concrete cover to bar diameter, and the amount of confinement. Without confinement, the specimens suffered significant bond deterioration and loss in load resistance in the first or second load cycle after bond splitting. Confining the concrete with transverse steel, steel fiber reinforcement or FRP composites within the splice region increased the bond strength and reduced the bond degradation with the number of loading cycles, leading to significant improvement in seismic performance. The envelope curve of the cyclic bond stress-slip response showed very good agreement with earlier test results obtained under static load conditions and the results predicted using an analytical model of the local bond stress-slip response of steel bars embedded in confined concrete.  相似文献   

12.
High-performance fiber-reinforced cementitious-composites (HPFRCCs) reinforced with mild steel reinforcing bars have bond strengths that are higher than ordinary concrete under monotonic loading conditions. High bond strengths in HPFRCCs have been attributed to the material toughness of HPFRCCs, which effectively restrains splitting cracks under monotonic loads. Characterization of the interface between HPFRCCs and mild reinforcement under cyclic loads remains largely unknown. The bond-slip behavior of two HPFRCC mixtures are examined under monotonic and cyclic loads in beam-end flexural specimens. Bond strength is shown to deteriorate due to cyclic load reversals after the maximum bond stress is reached, resulting in lower bond-slip toughness. Three dimensional computational simulations are conducted to investigate observed crack patterns and internal deformations at the interface of the HPFRCC and steel reinforcement. Numerical simulation results predicted splitting crack patterns observed in physical experiments, and also suggest that interface crushing occurs at the intersection of the reinforcement lugs and HPFRCC material. Further, simulated performance shows that damage to the bond interface is altered by the deformation history applied to the interface.  相似文献   

13.
通过11根玄武岩纤维增强聚合物复合材料(BFRP)筋钢纤维高强混凝土梁的受弯性能试验,研究了钢纤维混凝土层厚度、钢纤维体积分数和BFRP筋配筋率对BFRP筋钢纤维高强混凝土梁受弯破坏形态及其承载力的影响。结果表明,BFRP筋钢纤维高强混凝土梁的破坏模式可分为受压破坏、受拉破坏和平衡破坏3种;钢纤维混凝土层厚度和钢纤维体积分数的变化对于BFRP筋钢纤维高强混凝土梁受弯承载力具有一定程度的影响,当BFRP筋配筋率为0.77%时,掺加体积分数为1.0%钢纤维的梁受弯承载力较无钢纤维梁提高了22.7%,在受拉区0.57倍截面高度内掺加1.0vol%钢纤维的梁受弯承载力达到全截面钢纤维混凝土梁受弯承载力的86.7%;增大BFRP筋配筋量可显著提高BFRP筋钢纤维高强混凝土梁的受弯承载力,BFRP筋配筋率为1.65%的试验梁受弯承载力较配筋率为0.56%的试验梁提高了39.4%。针对不同的破坏模式,提出了BFRP筋钢纤维高强混凝土梁受弯承载力和平衡配筋率的计算方法,并结合安全配筋率的概念对试验梁的破坏模式进行了预测,试验结果与分析结果吻合良好。  相似文献   

14.
This paper studies the feasibility of using solid-state magnetoinductive probes for detecting and imaging steel reinforcing bars embedded within prestressed and reinforced concrete. Changes in the inductance of the sensor material are directly proportional to the strength of the measured magnetic field parallel to the sensor. Using a square coil of 300 mm times 300 mm times 2.5 mm, 10-mm rebars can be imaged down up to a depth of 100 mm. Experimental results obtained by scanning steel bar specimens are presented. General performance characteristics and sensor limitations are also investigated.  相似文献   

15.
A mixture of calcium carbide residue and fly ash (CRFA) is an innovative new binder for concrete instead of using ordinary Portland cement (OPC). Therefore, this study aims at investigating the bond interaction between common steel reinforcing bars and the aforementioned concrete. To this end, both CRFA and OPC concretes using crushed limestone and recycled concrete aggregate (RCA) as a coarse aggregate were prepared to investigate the bond strength of smooth and deformed bars by pull-out tests. The bond stress−slip relationships were also identified to determine the effects of CRFA binder and RCA on the bond strength behavior. The results indicate that the values the of bond-slip behavior and bond strengths of steel bar in CRFA concretes are similar to those embedded in OPC concrete. Moreover, the bond strength was significantly affected by RCA and the types of steel bar. Although the concretes had the same compressive strengths, the deformed bar embedded in CRFA concrete with RCA had a lower bond strength than the one with crushed limestone. However, the reduction in bond strength of the CRFA concrete with RCA was still less than that of OPC concrete with RCA. For the CRFA concretes, the bond strengths of the deformed bars were approximately 1.7–3.6 times higher than that of smooth bars.  相似文献   

16.
Thermal effects on GFRP rebars: experimental study and analytical analysis   总被引:1,自引:0,他引:1  
The bond mechanism between Glass Fiber Reinforced Polymer (GFRP) bars and concrete is investigated through experimental testing and analytical modeling. This bond depends on several parameters such as temperature. The present paper studies the thermal effect, under high temperature up to 80°C, on bond behaviour at the interface GFRP bars/concrete through pullout-testing. These tests are conducted on specimens after 24 h of exposure at various temperatures. The thermal effect on an average short-term bond strengths and the pullout-load versus end-slip behaviours are compared to untreated specimens (20°C). Some pullout-tests on steel bars/concrete are also performed for the comparison. Experimental results show no significant change in the average bond strength for specimens subjected to temperatures up to +60°C. On the other hand at 80°C, there is a decrease of bond strength of about 22 and 28% for the 8 mm and the 16 mm diameter rods, respectively. An analytical model of the bond stress-slip response of a GFRP/concrete bar has been proposed. The results show good accuracy between the model and the experimental results.  相似文献   

17.
The bond strength and slip of epoxy-coated reinforcing bars in concrete have been evaluated by carrying out single pullout and double pullout tests. In extended single pullout tests, slip measurements were made while tensile force was applied to reinforcing bars embedded in concrete. In double pullout tests, 20 cycles of load were applied at levels of steel stress between zero and 0·5 times characteristic steel strength. Strains were measured by electrical resistance strain gauges glued inside the bars. Both epoxy-coated and uncoated bars were used in the investigation, to obtain comparative results. The strain gradient along the bar was found to be less for the coated reinforcement. In general, the epoxy coating was found to increase slip in bond and thereby reduce the bond performance of coated bars.  相似文献   

18.
混凝土结构用CFRP筋的感知性能试验研究   总被引:10,自引:4,他引:6       下载免费PDF全文
对混凝土结构用CFRP筋及其加筋混凝土梁的力学性能和感知性能进行试验研究。自行研制开发了不同直径和表面处理形式的CFRP筋。在此基础上,制作了三组各6个标准受拉试件,分别测试了CFRP筋的弹性模量、极限抗拉强度和电阻变化率,得到了相应的变化曲线;其次制作了两组各3根CFRP加筋混凝土梁,测试了梁中CFRP筋电阻随载荷增加的变化曲线。研究表明,CFRP筋具有很好的力学性能和感知性能,对于混凝土结构加强筋和结构受力状态监测具有广泛的应用前景。  相似文献   

19.
The bond behavior of steel bars embedded in concrete, including the anchorage capacity and bond stress–slip relationship, is highly concerned owing to its importance in the design and checking calculation of reinforced concrete structures. The purpose of this paper is to present an experimental study on the bond behavior of deformed bars embedded in concrete subjected to lateral tension. In the experiment, a total of 237 pull-out specimens are tested. It is shown that the failure mode is influenced by the strength of concrete, ratio of the cover depth to bar diameter, and unfavorable lateral tension. The bond strength and the slip at the peak stress decreases with the increase of the unfavorable lateral tension for specimens in pull-out and splitting failures, but the ratio of the residual to ultimate bond strength almost keeps constant for specimens in pull-out failure. Based on the experimental results, an empirical formula for the bond stress–slip relationship is proposed. The empirical formula is in good agreement with the experimental results for specimens with different strengths of concrete, bar diameters, and combinations of lateral tensions.  相似文献   

20.
陈俊  张白  杨鸥  蒋恩浩 《工程力学》2018,35(10):92-100
为研究高温对锈蚀钢筋混凝土结构粘结锚固性能的影响,对锈蚀试件(锈蚀率为1.08%)与非锈蚀试件先进行高温试验(20℃、200℃、400℃、600℃、800℃),再进行中心拔出试验。试验结果表明:随温度的升高,锈蚀试件与非锈蚀试件粘结强度均呈下降趋势,与非锈蚀试件相比,锈蚀试件在温度不超过400℃时,其粘结强度下降趋势较为平缓。分析了高温作用后混凝土抗压强度、钢筋极限强度、钢筋与混凝土间粘结强度三者之间的关系,并建立了考虑不同温度、不同锈蚀率等因素影响下钢筋与混凝土的粘结-滑移关系式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号