首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, average-consensus control is considered for networks of continuous-time integrator agents under fixed and directed topologies. The control input of each agent can only use its local state and the states of its neighbors corrupted by white noises. To attenuate the measurement noises, time-varying consensus gains are introduced in the consensus protocol. By combining the tools of algebraic graph theory and stochastic analysis, the convergence of these kinds of protocols is analyzed. Firstly, for noise-free cases, necessary and sufficient conditions are given on the network topology and consensus gains to achieve average-consensus. Secondly, for the cases with measurement noises, necessary and sufficient conditions are given on the consensus gains to achieve asymptotic unbiased mean square average-consensus. It is shown that under the protocol designed, all agents’ states converge to a common Gaussian random variable, whose mathematical expectation is just the average of the initial states.  相似文献   

2.
In this paper, sampled-data based average-consensus control is considered for networks consisting of continuous-time first-order integrator agents in a noisy distributed communication environment. The impact of the sampling size and the number of network nodes on the system performances is analyzed. The control input of each agent can only use information measured at the sampling instants from its neighborhood rather than the complete continuous process, and the measurements of its neighbors’ states are corrupted by random noises. By probability limit theory and the property of graph Laplacian matrix, it is shown that for a connected network, the static mean square error between the individual state and the average of the initial states of all agents can be made arbitrarily small, provided the sampling size is sufficiently small. Furthermore, by properly choosing the consensus gains, almost sure consensus can be achieved. It is worth pointing out that an uncertainty principle of Gaussian networks is obtained, which implies that in the case of white Gaussian noises, no matter what the sampling size is, the product of the steady-state and transient performance indices is always equal to or larger than a constant depending on the noise intensity, network topology and the number of network nodes.  相似文献   

3.
In this paper, we discuss consensus problems for networks of dynamic agents with fixed and switching topologies. We analyze three cases: 1) directed networks with fixed topology; 2) directed networks with switching topology; and 3) undirected networks with communication time-delays and fixed topology. We introduce two consensus protocols for networks with and without time-delays and provide a convergence analysis in all three cases. We establish a direct connection between the algebraic connectivity (or Fiedler eigenvalue) of the network and the performance (or negotiation speed) of a linear consensus protocol. This required the generalization of the notion of algebraic connectivity of undirected graphs to digraphs. It turns out that balanced digraphs play a key role in addressing average-consensus problems. We introduce disagreement functions for convergence analysis of consensus protocols. A disagreement function is a Lyapunov function for the disagreement network dynamics. We proposed a simple disagreement function that is a common Lyapunov function for the disagreement dynamics of a directed network with switching topology. A distinctive feature of this work is to address consensus problems for networks with directed information flow. We provide analytical tools that rely on algebraic graph theory, matrix theory, and control theory. Simulations are provided that demonstrate the effectiveness of our theoretical results.  相似文献   

4.
This article studies the consensus problem for a group of sampled-data general linear dynamical agents over random communication networks. Dynamic output feedback protocols are applied to solve the consensus problem. When the sampling period is sufficiently small, it is shown that as long as the mean topology has globally reachable nodes, the mean square consensus can be achieved by selecting protocol parameters so that n???1 specified subsystems are simultaneously stabilised. However, when the sampling period is comparatively large, it is revealed that differing from low-order integrator multi-agent systems the consensus problem may be unsolvable. By using the hybrid dynamical system theory, an allowable upper bound of sampling period is further proposed. Two approaches to designing protocols are also provided. Simulations are given to illustrate the validity of the proposed approaches.  相似文献   

5.
This paper investigates the consensus of identical linear multi-agent systems with aperiodic intermittent communication topology by using the information of second-order neighbours (two-hop neighbourhood). The protocols based on two-hop neighbourhood information and intermittent communication topology are designed, under which consensus is reached. If the communication rate is larger than the corresponding threshold value, the networks will accelerate consensus by using two-hop neighbourhood information. By means of switching systems theory and Lyapunov–Razumikhin theorem, consensus of multi-agent systems with communication delays and intermittent communication topology is reached by two-hop neighbourhood information. Finally, simulation examples are provided to show the effectiveness of the theoretical results.  相似文献   

6.
Second-order consensus of multi-agent systems with noises via intermittent control is investigated in this paper. First, we study the mean-square consensus problem with communication noises by intermittent control. In order to reach consensus, under the strong directed interacted topology, by using the tools of graph theory and Lyapunov method, a distributed control protocol is proposed based on the noises and periodical intermittent information. The upper bound of noise strength in the sense of matrix norm and the lower bound of communication time duration are obtained. Second, a class of coupled system models which include delay-terms in their nonlinearities in the noisy environment is discussed. Under the balanced strongly connected topology, the sufficient conditions to achieve the mean-square average-consensus are obtained. Finally, simulations are given to illustrate the effectiveness of our results.  相似文献   

7.
This paper studies the distributed consensus problem for linear discrete-time multi-agent systems with delays and noises in transmission channels. Due to the presence of noises and delays, existing techniques such as the lifting technique and the stochastic Lyapunov theory are no longer applicable to the analysis of consensus. In this paper, a novel technique is introduced to overcome the difficulties induced by the delays and noises. A consensus protocol with decaying gains satisfying persistence condition is adopted. Necessary and sufficient conditions for strong consensus and mean square consensus are respectively given for non-leader–follower and leader–follower cases under a fixed topology. Under dynamically switching topologies and randomly switching topologies, sufficient conditions for strong consensus and mean square consensus are also obtained. Numerical examples are given to demonstrate the effectiveness of the proposed protocols.  相似文献   

8.
This paper studies consensus problems of high-order heterogeneous continuous-time networks with bounded communication delays and dynamically changing digraphs. The heterogeneous continuous-time networks consist of different order agents from first-order to lth-order agents, where different order networks correspond to different linear consensus protocols. In order to use the properties of Metzler matrix with zero row sums, we make model transformations of system matrix. Giving some restrictive conditions, we obtain the sufficient condition for consensus problems of heterogeneous networks with varying bounded communication delays. Although each communication graph may have no spanning trees, all agents of high-order heterogeneous networks can reach stationary consensus with varying bounded communication delays and dynamically changing digraphs. Finally, we give an example to validate the correctness of our obtained results.  相似文献   

9.
In this paper, discrete-time multi-agent consensus problem with quantization and communication delays is investigated. A new discrete-time multi-agent consensus model is considered in which each agent can only receive the delayed quantized information from its neighbors. In the presence of quantization and communication delays, it is shown that the multi-agent network can achieve consensus under the connectivity network topology. Simulation examples are also provided to demonstrate the correctness of the theoretical results.  相似文献   

10.
This paper investigates the H mean square consensus issue of leader-following multi-agent systems (MASs) over connected networks with time-varying delays, topology changes and multiple disturbances (i.e., measurement disturbances and topology stochastic noises). To achieve the consensus, a time-delayed distributed cooperative control strategy is first proposed. For suppressing the influence of data transmission disturbances, an improved point-to-area H index is designed as a system robustness performance. With the aid of Itô formula and congruence transformation, a time-delay-dependent Markovian switching controller design method is presented. The proposed method not only guarantees the mean square exponential consensus of MASs, but also has a feature of robustness to communication imperfections. Remarkably, compared with the existing literatures, the proposed method is more feasible because no extra supplementary condition is required. Finally, a numerical example is given to demonstrate the effectiveness of the proposed design approach.  相似文献   

11.
An important task for multi-agent systems (MAS) is to reach a consensus, e.g. to align their velocity vectors. Recent results propose appropriate consensus protocols to achieve such tasks, but most of them do not consider the effect of communication constraints such as the presence of time-delays in the exchange of information between the agents. In this article, we provide conditions for a non-linear, locally passive MAS of arbitrary size to reach a consensus, when the agents communicate over a packet-switched network that is characterised by a given topology. Both the cases of constant and switching topologies are considered. The nature of the communication channel imposes constraints that are modelled using stochastic delays of arbitrary distribution. We first embed this model in another, distributed but deterministic delay model and provide conditions for the error introduced by this simplification. In our main result, we provide conditions for the locally passive MAS with distributed delays to reach a consensus. In the case of a fixed topology, the underlying directed graph has to contain a spanning tree. In the case of a switching topology, only the union graph of all graphs that persist over time is required to contain a spanning tree. These conditions are independent of the distribution and the size of the packet delays. To show attractivity of the consensus set, we use an invariance principle for systems described by functional differential equations based on an appropriate Lyapunov–Razumikhin function. This methodological approach is the main contribution of this work and can also be applied to other consensus problems with delays. We illustrate our results by numerical simulations showing synchronisation of non-linear Kuramoto oscillators over a digital network.  相似文献   

12.
We consider a network of sensors in which each node may collect noisy linear measurements of some unknown parameter. In this context, we study a distributed consensus diffusion scheme that relies only on bidirectional communication among neighbour nodes (nodes that can communicate and exchange data), and allows every node to compute an estimate of the unknown parameter that asymptotically converges to the true parameter. At each time iteration, a measurement update and a spatial diffusion phase are performed across the network, and a local least-squares estimate is computed at each node. The proposed scheme allows one to consider networks with dynamically changing communication topology, and it is robust to unreliable communication links and failures in measuring nodes. We show that under suitable hypotheses all the local estimates converge to the true parameter value.  相似文献   

13.
ABSTRACT

In this paper, we investigate a novel finite-time median-related group consensus problem, where the finial consensus value can be identified as a desired function of the median of initial states instead of the much studied average value. The underlying communication topology is modelled by a weighted dynamical directed network. A distributed control protocol is firstly introduced to ensure that the agents can reach a median-related consensus in finite time in a collaboration network, meaning that all edge-weights of the communication network are non-negative. We then generalise the results to cooperation–competition networks, where the communication network is divided into predetermined collaboration subnetworks allowing possibly negative weights. Effective group control protocols are designed to guarantee the median-related group consensus in finite time. Finally, numerical simulations are presented to illustrate the availability of our theoretical results.  相似文献   

14.
In this paper, we discuss average consensus problem in undirected networks of dynamic agents with fixed and switching topologies as well as multiple time-varying communication delays. By employing a linear matrix inequality method, we prove that all the nodes in the network achieve average consensus asymptotically for appropriate communication delays if the network topology is connected. Particularly, several feasible linear matrix inequalities are established to determine the maximal allowable upper bound of time-varying communication delays. Numerical examples are given to demonstrate the effectiveness and the sharpness of the theoretical results.  相似文献   

15.
This article deals with the mean square consensus problem for second-order discrete-time multi-agent systems. Both cases of systems with and without time delays in Markov switching topologies are considered. With the introduced control protocols, necessary and sufficient conditions for mean square consensus of second-order multi-agent systems are derived. Under the given control protocols in Markov switching topologies, the second-order multi-agent systems can reach mean square consensus if and only if each union of the graphs corresponding to all the nodes in closed sets has a spanning tree. Finally, a simulation example is provided to illustrate the effectiveness of our theoretical results.  相似文献   

16.
崔艳  李庆华 《计算机应用研究》2020,37(11):3236-3240
针对具有通信时延的二阶多智能体系统的有限时间一致性控制问题,分别研究了具有固定拓扑和切换拓扑网络结构情形下的二阶多智能体系统的有限时间一致性。为使多智能体系统能在有限时间内可以达到一致,引入一致性控制增益矩阵并设计了相应的基于相对位置和相对速度的时延状态误差有限时间一致性控制算法,利用系统模型转换,泛函微分方程稳定性理论和有限时间Lyapunov稳定性定理得到了使系统在有限时间内达到一致跟踪的最大时延上界值。最后,仿真实验结果验证了所得理论的正确性和有效性。  相似文献   

17.
This paper studies a leader-following consensus problem of continuous-time double-integrator multi-agent systems with measurement noises and time-varying communication delays under directed topology. By utilising the neighbour position and velocity information, which are delayed and disturbed by measurement noises whose intensities are considered a function related to the neighbour position and velocity of agents, a distributed consensus protocol is presented, sufficient conditions of the tracking consensus in the sense of mean square are derived. Finally, the effectiveness of the proposed consensus protocol is proved by some simulations.  相似文献   

18.
This paper investigates the consensus problem in a multi-agent system with random delays governed by a Markov chain. The communication topology is assumed to be directed and fixed. With first-order dynamics under the sampled-data setting, we first convert the original system into a reduced-order one featuring the error dynamics. Accordingly, the consensus problem is transformed into the stabilization of the error dynamic system. Thereafter, based on the theory in stochastic stability for time-delay systems, a sufficient condition is established in terms of a set of linear matrix inequalities (LMIs). The mean square stability of the error dynamics is shown to guarantee consensus of the multi-agent system. By explicitly incorporating the transition probability of the random delay into consideration, the conservativeness in control design is reduced. A delay-dependent switching control scheme is developed by redesigning the adjacency matrix. Finally, simulation results are provided to verify the effectiveness of the proposed approach.  相似文献   

19.
This paper studies the consensus protocol using the information of second‐order neighbors in undirected and connected networks of linear systems with communication delays. The feedback matrix which guarantees consensus under both the proposed and the traditional protocol is given; it is shown that with this matrix, the networks under the proposed protocol converge faster than the traditional protocol. Based on this result, the delay sensitivity of the proposed protocol is considered under an assumption about the communication topology. The maximum allowable upper bound of the delays is obtained by solving certain linear matrix inequalities. Two simulation examples are presented to illustrate the effectiveness of the theoretical results.  相似文献   

20.
The paper studies asynchronous consensus problems of continuous-time multi-agent systems with discontinuous information transmission. The proposed consensus control strategy is implemented based on the state information of each agent's neighbors at some discrete times. The asynchrony means that each agent's update times, at which the agent adjusts its dynamics, are independent of others'. Furthermore, it is assumed that the communication topology among agents is time-dependent and the information transmission is with bounded time-varying delays. If the union of the communication topology across any time interval with some given length contains a spanning tree, the consensus problem is shown to be solvable. The analysis tool developed in this paper is based on nonnegative matrix theory and graph theory. The main contribution of this paper is to provide a valid distributed consensus algorithm that overcomes the difficulties caused by unreliable communication channels, such as intermittent information transmission, switching communication topology, and time-varying communication delays, and therefore has its obvious practical applications. Simulation examples are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号