首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The current competitive industrial context requires more flexible, intelligent and compact product lifecycles, especially in the product development process where several lifecycle issues have to be considered, so as to deliver lifecycle oriented products. This paper describes the application of a novel product relationships management approach, in the context of product lifecycle management (PLM), enabling concurrent product design and assembly sequence planning. Previous work has provided a foundation through a theoretical framework, enhanced by the paradigm of product relational design and management. This statement therefore highlights the concurrent and proactive aspect of assembly oriented design vision. Central to this approach is the establishment and implementation of a complex and multiple viewpoints of product development addressing various stakeholders design and assembly planning points of view. By establishing such comprehensive relationships and identifying related relationships among several lifecycle phases, it is then possible to undertake the product design and assembly phases concurrently. Specifically, the proposed work and its application enable the management of product relationship information at the interface of product-process data management techniques. Based on the theory, models and techniques such as described in previous work, the implementation of a new hub application called PEGASUS is then described. Also based on web service technology, PEGASUS can be considered as a mediator application and/or an enabler for PLM that externalises product relationships and enables the control of information flow with internal regulation procedures. The feasibility of the approach is justified and the associated benefits are reported with a mechanical assembly as a case study.  相似文献   

3.
The paper describes a novel framework for an assembly-oriented design (AOD) approach as a new functional product lifecycle management (PLM) strategy, by considering product design and assembly sequence planning phases concurrently. Integration issues of product life cycle into the product development process have received much attention over the last two decades, especially at the detailed design stage. The main objective of the research is to define assembly sequence into preliminary design stages by introducing and applying assembly process knowledge in order to provide an assembly context knowledge to support life-oriented product development process, particularly for product structuring. The proposed framework highlights a novel algorithm based on a mathematical model integrating boundary conditions related to DFA rules, engineering decisions for assembly sequence and the product structure definition. This framework has been implemented in a new system called PEGASUS considered as an AOD module for a PLM system. A case study of applying the framework to a catalytic-converter and diesel particulate filter sub-system, belonging to an exhaust system from an industrial automotive supplier, is introduced to illustrate the efficiency of the proposed AOD methodology.  相似文献   

4.
Assembly sequence planning (ASP) is a critical technology that bridges product design and realization. Deriving and fulfilling of the assembly precedence relations (APRs) are the essential points in assembly sequences reasoning. In this paper, focusing on APRs reasoning, ASP, and optimizing, a hierarchical ASP approach is proposed and its key technologies are studied systematically. APR inferring and the optimal sequences searching algorithms are designed and realized in an integrated software prototype system. The system can find out the geometric APRs correctly and completely based on the assembly CAD model. Combined with the process APRs, the geometric and engineering feasible assembly sequences can be inferred out automatically. Furthermore, an algorithm is designed by which optimal assembly sequences can be calculated out from the immense geometric and engineering feasible assembly sequences. The case study demonstrates that the approach and its algorithms may provide significant assistance in finding the optimal ASP and improving product assembling.  相似文献   

5.
X. F. Zha   《Knowledge》2002,15(8):493-506
Multi-agent modeling has emerged as a promising discipline for dealing with decision making process in distributed information system applications. One of such applications is the modeling of distributed design or manufacturing processes which can link up various designs or manufacturing processes to form a virtual consortium on a global basis. This paper proposes a novel knowledge intensive multi-agent cooperative/collaborative framework for concurrent intelligent design and assembly planning, which integrates product design, design for assembly, assembly planning, assembly system design, and assembly simulation subjected to econo-technical evaluations. An AI protocol based method is proposed to facilitate the integration of intelligent agents for assembly design, planning, evaluation and simulation process. A unified class of knowledge intensive Petri nets is defined using the O-O knowledge-based Petri net approach and used as an AI protocol for handling both the integration and the negotiation problems among multi-agents. The detailed cooperative/collaborative mechanism and algorithms are given based on the knowledge objects cooperation formalisms. As such, the assembly-oriented design system can easily be implemented under the multi-agent-based knowledge-intensive Petri net framework with concurrent integration of multiple cooperative knowledge sources and software. Thus, product design and assembly planning can be carried out simultaneously and intelligently in an entirely computer-aided concurrent design and assembly planning system.  相似文献   

6.
This paper introduces an innovative framework for product design and assembly process planning reconciliation. Nowadays, both product lifecycle phases are quasi concurrently performed in industry and this configuration has led to competitive gains in efficiency and flexibility by improving designers’ awareness and product quality. Despite these efforts, some limitations/barriers are still encountered regarding the lack of dynamical representation, information consistency and information flow continuity. It is due to the inherent nature of the information created and managed in both phases and the lack of interoperability between the related information systems. Product design and assembly process planning phases actually generate heterogeneous information, since the first one describes all information related to “what to be delivered” and the latter rationalises all information with regards to “how to be assembled”. In other words, the integration of assembly planning issue in product design requires reconciliation means with appropriate relationships of the architectural product definition in space with its assembly sequence in terms of time. Therefore, the main objective is to provide a spatiotemporal information management framework based on a strong semantic and logical foundation in product lifecycle management (PLM) systems, increasing therefore actors’ awareness, flexibility and efficiency with a better abstraction of the physical reality and appropriate information management procedures. A case study is presented to illustrate the relevance of the proposed framework and its hub-based implementation within PLM systems.  相似文献   

7.
The assembly line process planning connects product design and manufacturing through translating design information to assembly integration sequence. The assembly integration sequence defines the aircraft system components installation and test precedence of an assembly process. This activity is part of the complex systems integration and verification process from a systems engineering view. In this paper, the complexity of modern aircraft is defined by classifying aircraft system interactions in terms of energy flow, information data, control signals and physical connections. At the early conceptual design phase of assembly line planning, the priority task is to understand these product complexities, and generate the installation and test sequence that satisfies the designed system function and meet design requirements. This research proposes a novel method for initial assembly process planning that accounts for both physical and functional integrations. The method defines aircraft system interactions by using systems engineering concepts based on traceable RFLP (Requirement, Functional, Logical and Physical) models and generate the assembly integration sequence through a structured approach. The proposed method is implemented in an industrial software environment, and tested in a case study. The result shows the feasibility and potential benefits of the proposed method.  相似文献   

8.
This paper describes the use of liaison to better integrate product model and assembly process model so as to enable sharing of design and assembly process information in a common integrated form and reason about them. Liaison can be viewed as a set, usually a pair, of features in proximity with which process information can be associated. A liaison is defined as a set of geometric entities on the parts being assembled and relations between these geometric entities. Liaisons have been defined for riveting, welding, bolt fastening, screw fastening, adhesive bonding (gluing) and blind fastening processes. The liaison captures process specific information through attributes associated with it. The attributes are associated with process details at varying levels of abstraction. A data structure for liaison has been developed to cluster the attributes of the liaison based on the level of abstraction. As information about the liaisons is not explicitly available in either the part model or the assembly model, algorithms have been developed for extracting liaisons from the assembly model. The use of liaison is proposed to enable both the construction of process model as the product model is fleshed out, as well as maintaining integrity of both product and process models as the inevitable changes happen to both design and the manufacturing environment during the product lifecycle. Results from aerospace and automotive domains have been provided to illustrate and validate the use of liaisons.  相似文献   

9.
Assemblability analysis and evaluation plays a key role in assembly design, operation analysis and planning. In this paper, we propose an integrated intelligent approach and framework for evaluation of assemblability and assembly sequence for electro-mechanical assemblies (EMAs). The approach integrates the STEP (STandard for the Exchange of Product model data, officially ISO 10303)-based assembly model and XML schema with the fuzzy analytic hierarchy process for assembly evaluation. The evaluation structure covers not only the geometric and physical characteristics of the assembly parts but also the assembly operation data necessary to assemble the parts. The realization of the integration system is implemented through a multi-agent framework. Through integration with the STEP-based product modeling agent system, CAD agent system and assembly planning agent system, the developed assembly evaluation agent system can effectively incorporate, exchange, and share concurrent engineering knowledge into the preliminary design process so as to provide users with suggestions for improving a design and also helping obtain better design ideas. The applications show that the proposed approach and system are feasible. Received: July 2004 / Accepted: January 2006  相似文献   

10.
A feature-based model is proposed for assembly sequence planning automation. The fundamental assembly modeling strategy for a product is based on the mating features of its components. The objectives of this study are to integrate assembly planning of a product with its CAD model, generate a correct and practical assembly sequence and establish a software system to carry out the planning process. A disassembly approach in assembly planning is used in this study. The degree of freedom information between two mating features is used to characterize their kinematic conditions. Boolean operations of the degrees of freedom on all features of a component provides its local degree of freedom, which is used to set up the functional precedence relation. In some cases, where the functional precedence relation cannot be detected by geometric reasoning, clipping of the known `common sense' relation is applied by a user. A bounding box checking approach is used to ensure no global collision during assembly. Furthermore, a set of criteria based on assembly feasibility, manipulability, assembly direction, cost and stability is used to choose a good assembly sequence.  相似文献   

11.
Integrated knowledge-based Petri net intelligent flexible assembly planning   总被引:1,自引:0,他引:1  
Automatic assembly planning is recognized as an important tool for reducing manufacturing costs in concurrent product and process development. A novel knowledge-based Petri net (KBPN) is defined, based on the incorporation of expert systems into the usual Petri nets, and used for a unified assembly knowledge representation scheme. A KBPN-approach integrated with a sequence generation algorithm is proposed for the modeling, planning, simulation, analysis and evaluation of the flexible assembly system (FAS). The developed KBPN-based assembly planning system (KAPS) can automatically adjust the deviations between the theoretical planning parameters and the process parameters of real assembly operations to guarantee the best strategies and plans (sequences) for flexible assembly. The research findings are exemplified with a simple assembly to show the effectiveness of the method.  相似文献   

12.
This work investigates the application of genetic algorithm (GA)-based search techniques to concurrent assembly planning, where product design and assembly process planning are performed in parallel, and the evaluation of a design configuration is influenced by the performance of its related assembly process. Several types of GAs and an exhaustive combinatorial approach are compared, in terms of reliability and speed in locating the global optimum. The different algorithms are tested first on a set of artificially generated assembly planning problems, which are intended to represent a broad spectrum of combinatorial complexity; then an industrial case study is presented. Test problems indicate that GAs are slightly less reliable than the combinatorial approach in finding the global, but are capable of identifying solutions which are very close to the global optimum with consistency, soon outperforming the combinatorial approach in terms of execution times, as the problem complexity grows. For an industrial case study of low combinatorial complexity, such as the one chosen in this work, GAs and combinatorial approach perform almost equivalently, both in terms of reliability and speed. In summary, GAs seem a suitable choice for those planning applications where response time is an important factor, and results which are close enough to the global optimum are still considered acceptable such as in concurrent assembly planning, where response time is a key factor when assessing the validity of a product design configuration in terms of the performance of its assembly plan.  相似文献   

13.
Assembly features in modeling and planning   总被引:4,自引:0,他引:4  
In recent years, features have been introduced in modeling and planning for manufacturing of parts. Such features combine geometric and functional information. Here it is shown that the feature concept is also useful in assembly modeling and planning. For modeling and planning of both single parts and assemblies, an integrated object-oriented product model is introduced. For specific assembly-related information, assembly features are used. Handling features contain information for handling components, connection features information on connections between components. A prototype modeling environment has been developed. The product model has been successfully verified within several analyses and planning modules, in particular stability analyses, grip planning, motion planning and assembly sequence planning. Altogether, feature-based product models for assembly can considerably help in both assembly modeling and planning, on the one hand by integrating single-part and assembly modeling, and on the other hand by integrating modeling and planning.  相似文献   

14.
In this research, a novel near optimum automated rigid aircraft engine parts assembly path planning algorithm based on particle swarm optimization approach is proposed to solve the obstacle free assembly path planning process in a 3d haptic assisted environment. 3d path planning using valid assembly sequence information was optimized by combining particle swarm optimization algorithm enhanced by the potential field path planning concepts. Furthermore, the presented approach was compared with traditional particle swarm optimization algorithm (PSO), ant colony optimization algorithm (ACO) and genetic algorithm (CGA). Simulation results showed that the proposed algorithm has faster convergence rate towards the optimal solution and less computation time when compared with existing algorithms based on genetics and ant colony approach. To confirm the optimality of the proposed algorithm, it was further experimented in a haptic guided environment, where the users were assisted with haptic active guidance feature to perform the process opting the optimized assembly path. It was observed that the haptic guidance feature further reduced the overall task completion time.  相似文献   

15.
X. F. Zha  H. Du 《Computer aided design》2002,34(14):1087-1110
Product data exchange and interfacing between different CAD/CAM systems are of great importance to the development of concurrent integrated design environments and computer integrated manufacturing systems. This paper presents a STEP-based method and system for concurrent integrated design and assembly planning. An integrated object model for mechanical systems and assemblies is first defined by a hierarchy of structure, geometry and feature. The structure is represented as a component-connector or joint multi-level graph with both hierarchical functional and assembly relations. These hierarchical relation models are then used for uniformly describing their causal relations both for assembly level and feature based single part level. The generic product assembly model is organized according to STEP, using mostly the entities of integrated resources and partly self-defined entities, which are necessary for design and assembly planning. Based on the generic product assembly model, STEP-based strategies and agent concepts are used for agent-based concurrent integration of design and assembly planning. A prototype system, consisting of a CAD system, a product modeling system, an assembly planning system, and an assembly evaluation system is developed, in which product data can be exchanged between these subsystems. Details about the implementation of the system are addressed. The integrated design and assembly planning system can support the introduction of a new product. The results of assembly planning are feedback to the stage of assembly design to improve on the design. A case study is carried out for assembly-oriented design of a gearbox, to illustrate the proposed approach and to validate the developed system.  相似文献   

16.
According to the aircraft assembly worksite scene process, the hierarchical data model based on PPR (product, process, resources) was got to achieve the conversion in various types of aircraft assembly process data model. At the same time, the lightweight technology and human–computer interactive scene control technology were researched to obtain the lightweight of three-dimensional (3D) model and site scene and the human–computer real-time interaction between people and virtual environment through the computer keyboard and mouse, respectively. And then, the visual assembly sequence planning algorithm based on the parallel binary-coded was suggested to complete the aircraft assembly sequence planning. On the basis of techniques mentioned above, we developed the assembly worksite scene process system, which can be integrated with PDM system. At last, an application case of aircraft nose assembly was given, and the result was proved to be effective.  相似文献   

17.
Virtual assembly has been widely used in product development. However, virtual operation and actual operation are different in time and space, the simulation of interactive virtual assembly cannot support the assembly operation's process planning directly. In this paper, the solution for assembly operation's process planning is developed based on interactive virtual assembly. According to the solution, interactive assembly operation is used to obtain the actions of operation sequence. The actions are mapped into the data of a real operation action to obtain real operation actions. Then assembly operation cards can be obtained. To support the assembly operation actions obtained through virtual assembly simulation, a product assembly model is proposed. An operation semantic model is used to replace the geometric constraint model of assembly, which contains several ordered geometric constraints and some engineering restriction conditions. To test the solution and the models, one process planning example of an automobile engine is introduced. The results verified the feasibility and the effectiveness of the methods.  相似文献   

18.
Assembly sequence matters much to the performance in assembly production. Focusing on the spatial assembly sequencing and evaluating, a set of geometric computation methods and algorithms are studied systematically. A method entitled 3D geometric constraint analysis (3D-GCA) is proposed based on the planar GCA method combined with the techniques of oriental bounding boxes and the separation axis theorem. With 3D-GCA, the assembly precedence relations and the spatial geometric feasible assembly sequences can be reasoned out correctly and automatically. Furthermore, four evaluation criteria, viz. assembly angle, assembly direction, reorientation, and stability, and related algorithms are defined for evaluating the assembly’s complexity. For selecting the optimal sequence, a comprehensive evaluation function is constructed by integrating the four criteria and the weights are quantitatively allocated referring to fuzzy set theory, clustering analysis, and entropy theory. In addition, a software prototype system is developed and two case assemblies are studied. The analysis results and findings demonstrate that the proposed approaches and algorithms can provide significant assistance in the spatial assembly sequencing and the optimal sequence selection.  相似文献   

19.
20.
The objective of this paper is to investigate specific methodologies for conceptual design and to establish a computational framework for an intelligent CAD system in a concurrent engineering environment. The main idea in developing such a system is to help designers in conceiving better design ideas within given sets of design, manufacturing, and assembly constraints. It is, therefore, essential to integrate intelligently diverse knowledge sources from different fields of manufacturing (e.g., design, process planning, assembly, inspection). When an object creation process is complete, the system analyzes the structure in consultation with its intelligent computational modules (“local experts”) to make sure that no functional, geometric design or manufacturing constraints are invalidated and to suggest an alternative better design, whenever possible. The paper also discusses the implementation of a prototype system for automated fixture design in the proposed concurrent engineering environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号