首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By optimizing the inductively coupled plasma (ICP) oxidation condition, a thin oxide of 10 nm has been grown at 350°C to achieve excellent gate oxide integrity of low leakage current<5×10-8 A/cm2 (at 8 MV/cm), high breakdown field of 9.3 MV/cm and low interface trap density of 1.5×1011 /eV cm2. The superior performance poly-Si TFTs using such a thin ICP oxide were attained to achieve a high ON current of 110 μA/μm at VD=1 V and VG=5 V and the high electron field effect mobility of 231 cm2/V·S  相似文献   

2.
High-performance inversion-type enhancement- mode (E-mode) n-channel In0.65Ga0.35As MOSFETs with atomic-layer-deposited Al2O3 as gate dielectric are demonstrated. A 0.4-mum gate-length MOSFET with an Al2O3 gate oxide thickness of 10 nm shows a gate leakage current that is less than 5 times 10-6 A/cm2 at 4.0-V gate bias, a threshold voltage of 0.4 V, a maximum drain current of 1.05 A/mm, and a transconductance of 350 mS/mm at drain voltage of 2.0 V. The maximum drain current and transconductance scale linearly from 40 mum to 0.7 mum. The peak effective mobility is ~1550 cm2/V ldr s at 0.3 MV/cm and decreases to ~650 cm2/V ldr s at 0.9 MV/cm. The obtained maximum drain current and transconductance are all record-high values in 40 years of E-mode III-V MOSFET research.  相似文献   

3.
Silicon Carbide (4H-SiC), asymmetrical gate turn-off thyristors (GTO's) were fabricated and tested with respect to forward voltage drop (VF), forward blocking voltage, and turn-off characteristics. Devices were tested from room temperature to 350°C in the dc mode. Forward blocking voltages ranged from 600-800 V at room temperature for the devices tested. VF of a typical device at 350°C was 4.8 V at a current density of 500 A/cm2. Turn-off time was less than 1 μs. Although no beveling or advanced edge termination techniques were used, the blocking voltage represented approximately 50% of the theoretical value when tested in an air ambient. Also, four GTO cells were connected in parallel to demonstrate 600-V, 1.4 A (800 A/cm 2) performance  相似文献   

4.
We report the characteristics of large area (3.3 × 3.3 mm 2) high-voltage 4H-SiC DiMOSFETs. The MOSFETs show a peak MOS channel mobility of 22 cm2/V·s and a threshold voltage of 8.5 V at room temperature. The DiMOSFETs exhibit an on-resistance of 4.2 mΩ·cm2 at room temperature and 85 mΩ·cm2 at 200°C. Stable avalanche characteristics at approximately 2.4 kV are observed. An on-current of 10 A is measured on a 0.103 cm2 device. High switching speed is also demonstrated. This suggests that the devices are capable of high-voltage, high-frequency, low-loss switching applications  相似文献   

5.
The characteristics of CMOS transistors fabrication on silicon implanted with oxygen (SIMOX) materials were measured as a function of the silicon superficial layer contamination levels. In addition, postimplant anneal temperatures of 1300°C, 1350°C, and 1380°C were examined. It is found that the transistor leakage currents as well as the integrity of the gate oxide and implanted SIMOX oxide are functions of the carbon content in the starting material. Leakage currents below 1.0×10-12 A/μm of channel width have been measured when the carbon concentration is reduced to 2×1018/cm2. In addition, the integrity of the transistor gate dielectric, SIMOX implanted oxide, and oxygen precipitate density are seen to be a function of the postimplant anneal temperature. A gate dielectric breakdown field of 10 MV/cm has been achieved when the postimplant temperature is increased to 1380°C  相似文献   

6.
We have fabricated buried channel (BC) MOSFETs with a thermally grown gate oxide in 4H-SiC. The gate oxide was prepared by dry oxidation with wet reoxidation. The BC region was formed by nitrogen ion implantation at room temperature followed by annealing at 1500°C. The optimum doping depth of the BC region has been investigated. For a nitrogen concentration of 1×1017 cm-3, the optimum depth was found to be 0.2 μm. Under this condition, a channel mobility of 140 cm2/Vs was achieved with a threshold voltage of 0.3 V. This channel mobility is the highest reported so far for a normally-off 4H-SiC MOSFET with a thermally grown gate oxide  相似文献   

7.
Digital CMOS IC's in 6H-SiC operating on a 5-V power supply   总被引:7,自引:0,他引:7  
A CMOS technology in 6H-SiC utilizing an implanted p-well process is developed. The p-wells are fabricated by implanting boron ions into an n-type epilayer. PMOS devices are fabricated on an n-type epilayer while the NMOS devices are fabricated on implanted p-wells using a thermally grown gate oxide. The resulting NMOS devices have a threshold voltage of 3.3 V while the PMOS devices have a threshold voltage of -4.2 V at room temperature. The effective channel mobility is around 20 cm 2/Vs for the NMOS devices and around 7.5 cm2/Vs for the PMOS devices. Several digital circuits, such as inverters, NAND's, NOR's, and 11-stage ring oscillators are fabricated using these devices and exhibited stable operation at temperatures ranging from room temperature to 300°C. These digital circuits are the first CMOS circuits in 6H-SiC to operate with a 5-V power supply for temperatures ranging from room temperature up to 300°C  相似文献   

8.
A novel planar accumulation channel SiC MOSFET structure is reported in this paper. The problems of gate oxide rupture and poor channel conductance previously reported in SiC UMOSFETs are solved by using a buried P+ layer to shield the channel region. The fabricated 6H-SiC unterminated devices had a blocking voltage of 350 V with a specific on-resistance of 18 mΩ.cm2 at room temperature for a gate bias of only 5 V. This measured specific on-resistance is within 2.5× of the value calculated for the epitaxial drift region (1016 cm-3, 10 μm), which is capable of supporting 1500 V  相似文献   

9.
Key technologies for fabricating polycrystalline silicon thin film transistors (poly-Si TFTs) at a low temperature are discussed. Hydrogenated amorphous silicon films were crystallized by irradiation of a 30 ns-pulsed XeCl excimer laser. Crystalline grains were smaller than 100 nm. The density of localized trap states in poly-Si films was reduced to 4×1016 cm-3 by plasma hydrogenation only for 30 seconds. Remote plasma chemical vapor deposition (CVD) using mesh electrodes realized a good interface of SiO 2/Si with the interface trap density of 2.0×1010 cm-2 eV-1 at 270°C. Poly-Si TFTs were fabricated at 270°C using laser crystallization, plasma hydrogenation and remote plasma CVD. The carrier mobility was 640 cm2/Vs for n-channel TFTs and 400 cm2/Vs for p-channel TFTs. The threshold voltage was 0.8 V for n-channel TFTs and -1.5 V for p-channel TFTs. The leakage current of n-channel poly-Si TFTs was reduced from 2×10-10 A/μm to 3×10-13 A/μm at the gate voltage of -5 V using an offset gate electrode with an offset length of 1 μm  相似文献   

10.
Electrical and reliability properties of ultrathin La2O 3 gate dielectric have been investigated. The measured capacitance of 33 Å La2O3 gate dielectric is 7.2 μF/cm2 that gives an effective K value of 27 and an equivalent oxide thickness of 4.8 Å. Good dielectric integrity is evidenced from the low leakage current density of 0.06 A/cm2 at -1 V, high effective breakdown field of 13.5 MV/cm, low interface-trap density of 3×1010 eV-1/cm2, and excellent reliability with more than 10 years lifetime even at 2 V bias. In addition to high K, these dielectric properties are very close to conventional thermal SiO2   相似文献   

11.
Polycrystalline silicon thin film transistors have been fabricated at reduced gate oxidation thermal budgets by utilizing NF3-enhanced dry oxidation. Good performance TFTs with effective electron mobility values as high as 38 cm2/V.sec, threshold voltage values near zero, ON/OFF current ratios of up to 5×107 and subthreshold slopes of 0.3 V/dec have been fabricated at an oxidation temperature of 800°C. Stable devices at an electrical stressing field of 3 MV/cm were demonstrated. Thermal gate oxide TFTs have also been fabricated at a maximum temperature of 650°C. The effect of hydrogen plasma passivation was found to depend on process conditions and was correlated with the amount of fluorine in the area near the Si-SiO2 interface. Passivation at low power was always beneficial. Passivation at high power was highly beneficial for a limited amount of interfacial fluorine, but less beneficial or even detrimental when a large fluorine amount in the near interface area was present  相似文献   

12.
The reduction of trap-state densities by plasma hydrogenation in n-channel polysilicon thin-film transistors (poly-TFTs) fabricated using a maximum temperature of 600°C has been studied. Hydrogenated devices have a mobility of ~40 cm2/V×5, a threshold voltage of ~2 V, an inverse subthreshold of ~ 0.55 V/decade, and a maximum on/off current ratio of 5×108. The effective channel length decreases by ~0.85 μm after a short hydrogenation which may be attributed to the activation of donors at trap states near the source/drain junctions. Trap-state densities decrease from 1.6×1012 to 3.5×1011 cm-2 after hydrogenation, concomitant with the reduction of threshold voltage. Using the gate lengths at which the trap-state densities deviate from the long-channel values as markets for the leading edge of passivation, the apparent hydrogen diffusivity is found to be 1.2×10-11 cm2/s at 350°C in the TFT structure  相似文献   

13.
The modified structure of the lateral IGBT(LIGBT) on an SOI wafer for improving the dynamic latch-up characteristics is presented together with its numerical simulations and experimental results. The modified LIGBT structure has a p+-emitter layer between the collector and gate regions. The current at which the latch-up occurs during the turn-off transient under an inductive load is estimated in comparison with that of the conventional LIGBT. The dynamic latch-up current at room temperature and 125°C for the modified LIGBT were 350 A/cm2 and 290 A/cm2, respectively. These results indicate the improvement of about 3.5 times at room temperature and about 5.5 times at 125°C compared with those for the conventional LIGBT. This remarkable improvement in the dynamic latch-up performance is accomplished at the expense of an increase of 0.8 V in the forward voltage drop  相似文献   

14.
Thin film n-channel transistors have been fabricated in polycrystalline silicon films crystallized using hydrogen plasma seeding, by using several processing techniques with 600 to 625°C or 1000°C as the maximum process temperature. The TFTs from hydrogen plasma-treated films with a maximum process temperature of 600°C, have a linear field-effect mobility of ~35 cm2/Vs and an ON/OFF current ratio of ~106, and TFTs with a maximum process temperature of 1000°C, have a linear field-effect mobility of ~100 cm2/Vs and an ON/OFF current ratio of ~107. A hydrogen plasma has also then been applied selectively a in the source and drain regions to seed large crystal grains in the channel. Transistors made with this method with maximum temperature of 600°C showed a nearly twofold improvement in mobility (72 versus 37 cm2 /Vs) over the unseeded devices at short channel lengths. The dominant factor in determining the field-effect mobility in all cases was the grain size of the polycrystalline silicon, and not the gate oxide growth/deposition conditions. Significant increases in mobility are observed when the grain size is in order of the channel length. However the gate oxide plays an important role in determining the subthreshold slope and the leakage current  相似文献   

15.
Experimental results are described which demonstrate the ability to switch a thyristor from its ON state to its OFF state by using a depletion layer formed by the application of gate bias to a trench-gate MOSFET integrated within the thyristor structure. The maximum controllable current is found to be a function of the gate bias voltage, the trench depth, and the ambient temperature. The maximum controllable current can be increased by increasing the trench depth and decreasing the p-base sheet resistance. The maximum controllable current decreases at high temperatures, as in the case of other MOS-bipolar devices, but is significantly better than for previous devices. The absolute values of the maximum turnoff current are well above 1000 A/cm2 at room temperature and 500 A/cm2 at 200°C  相似文献   

16.
A 6H-SiC thyristor has been fabricated and characterized. A forward breakover voltage close to 100 V and a pulse switched current density of 5200 A/cm2 have been demonstrated. The thyristor is shown to operate under pulse gate triggering for turn-on and turn-off, with a rise time of 43 ns and a fall time of less than 100 ns. The forward breakover voltage is found to decrease by only 4% when the operating temperature is increased from room temperature to 300°C. It is found that anode ohmic contact resistance dominates the device forward drop at high current densities  相似文献   

17.
Cubic crystalline p-SiCN films are deposited on n-Si(100) substrates to form SiCN/Si heterojunction diodes (HJDs) with a rapid thermal chemical vapor deposition (RTCVD) technique. The developed SiCN/Si HJDs exhibit good rectifying properties up to 200°C. At room temperature, the reverse breakdown voltage is more than 29 V at the leakage current density of 1.2×10-4 A/cm2. Even at 200°C, the typical breakdown voltage of SiCN/Si HJDs is still preserved about 5 V at the leakage current density of 1.47×10-4 A/cm2. These properties are better than the β-SiC on Si HJDs for high temperature applications  相似文献   

18.
High performance enhancement mode InP MISFET's have been successfully fabricated by using the sulfide passivation for lower interface states and with photo-CVD grown P3N5 film used as gate insulator. The MISFET's thus fabricated exhibited exhibited pinch-off behavior with essentially no hysteresis. Furthermore the device showed a superior stability of drain current. Specifically under the gate bias of 2 V for 104 seconds the room temperature drain current was shown to reduce from the initial value merely by 2.9% at the drain voltage of 4 V. The effective electron mobility and extrinsic transconductance are found to be about 2300 cm 2/V·s and 2.7 mS/mm, respectively. The capacitance-voltage characteristics of the sulfide passivated InP MIS diodes show little hysteresis and the minimum density of interface trap states as low as 2.6×1014/cm2 eV has been attained  相似文献   

19.
Data are presented on Al-free InGaAsP-GaAs single quantum well laser diodes operating at 875 nm. Total output powers in excess of 4 W are achieved from a 100 μm broad area gain-guided device. Threshold currents under 200 A/cm2 are reported for diodes operated continuous wave (cw) at room temperature (20°C)  相似文献   

20.
Effects of hydrogen postoxidation annealing (H2 POA) on 4H-silicon carbide (SiC) MOSFETs with wet gate oxide on the (112¯0) face have been investigated. As a result, an inversion channel mobility of 110 cm2/Vs was successfully achieved using H2 POA at 800°C for 30 min. H2 POA reduces the interface trap density by about one order of magnitude compared with that without H2 POA, resulting in considerable improvement of the inversion channel mobility to 3.5 times higher than that without H2 POA. In addition, 4H-SiC MOSFET with H2 POA has a lower threshold voltage of 3.1 V and a wide gate voltage operation range in which the inversion channel mobility is more than 100 cm2/Vs  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号