首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Black liquor gasification (BLG) is currently being developed as an alternative technology for energy and chemical recovery at chemical pulp mills. This study examines how different assumptions regarding systems surrounding the pulp mill affect the CO2 emission balances for different BLG concepts. The syngas from the gasification process can be used for different applications; this study considers production of renewable motor fuels and electricity generation. Both a market pulp mill and an integrated pulp and paper mill are considered as host mill for the BLG plant. Furthermore, the consequences of limited availability of biomass are shown, i.e., increasing the use of biomass in a mill is not necessarily CO2-neutral. The results show that the potential to reduce CO2 emissions by introducing BLG is generally much higher for a market pulp mill than for an integrated pulp and paper mill. Electricity generation from the syngas is favoured when assuming high grid electricity CO2 emissions where as motor fuel production is favoured when assuming low grid electricity CO2 emissions. When considering the consequences of limited availability of biomass, the CO2 emission balances are strongly affected, in some cases changing the results from a decrease to an increase of the CO2 emissions.  相似文献   

2.
In this paper we show the effects of expanding the system when evaluating well‐to‐wheel (WTW) CO2 emissions for biomass‐based transportation, to include the systems surrounding the biomass conversion system. Four different cases are considered: DME via black liquor gasification (BLG), methanol via gasification of solid biomass, lignocellulosic ethanol and electricity from a biomass integrated gasification combined cycle (BIGCC) used in a battery‐powered electric vehicle (BPEV). All four cases are considered with as well as without carbon capture and storage (CCS). System expansion is used consistently for all flows. The results are compared with results from a conventional WTW study that only uses system expansion for certain co‐product flows. It is shown that when expanding the system, biomass‐based transportation does not necessarily contribute to decreased CO2 emissions and the results from this study in general indicate considerably lower CO2 mitigation potential than do the results from the conventional study used for comparison. It is shown that of particular importance are assumptions regarding future biomass use, as by expanding the system, future competition for biomass feedstock can be taken into account by assuming an alternative biomass usage. Assumptions regarding other surrounding systems, such as the transportation and the electricity systems are also shown to be of significance. Of the four studied cases without CCS, BIGCC with the electricity used in a BPEV is the only case that consistently shows a potential for CO2 reduction when alternative use of biomass is considered. Inclusion of CCS is not a guarantee for achieving CO2 reduction, and in general the system effects are equivalent or larger than the effects of CCS. DME from BLG generally shows the highest CO2 emission reduction potential for the biofuel cases. However, neither of these options for biomass‐based transportation can alone meet the needs of the transport sector. Therefore, a broader palette of solutions, including different production routes, different fuels and possibly also CCS, will be needed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Black liquor gasification (BLG) is being developed as an alternative technology for energy and chemical recovery in kraft pulp mills. This study compares BLG – with downstream production of DME (dimethyl ether) or electricity – with recovery boiler-based pulping biorefinery concepts for different types of mills. The comparison is based on profitability as well as CO2 emissions, using different future energy market scenarios. The possibility for carbon capture and storage (CCS) is considered. The results show that, if commercialised, BLG with DME production could be profitable for both market pulp mills and integrated pulp and paper mills in all energy market scenarios considered. Recovery boiler-based biorefinery concepts including extraction of lignin or solid biomass gasification with DME production could also be profitable for market and integrated mills, respectively. If the mill is located close to an infrastructure for CO2 collection and transportation, CCS significantly improves profitability in scenarios with a high CO2 emissions charge, for both combustion- and gasification-based systems. Concepts that include CCS generally show a large potential for reduction of global CO2 emissions. Few of the concepts without CCS achieve a significant reduction of CO2 emissions, especially for integrated mills.  相似文献   

5.
This paper evaluates the economic effects and the potential for reduced CO2 emissions when biomass gasification applications are introduced in a Swedish district heating (DH) system. The gasification applications included in the study deliver heat to the DH network while producing renewable electricity or biofuels. Gasification applications included are: external superheater for steam from waste incineration (waste boost, WB), gas engine CHP (BIGGE), combined cycle CHP (BIGCC) and production of synthetic natural gas (SNG) for use as transportation fuel. Six scenarios are used, employing two time perspectives – short-term and medium-term – and differing in economic input data, investment options and technical system. To evaluate the economic performance an optimisation model is used to identify the most profitable alternatives regarding investments and plant operation while meeting the DH demand. This study shows that introducing biomass gasification in the DH system will lead to economic benefits for the DH supplier as well as reduce global CO2 emissions. Biomass gasification significantly increases the potential for production of high value products (electricity or SNG) in the DH system. However, which form of investment that is most profitable is shown to be highly dependent on the level of policy instruments for biofuels and renewable electricity. Biomass gasification applications can thus be interesting for DH suppliers in the future, and may be a vital measure to reach the 2020 targets for greenhouse gases and renewable energy, given continued technology development and long-term policy instruments.  相似文献   

6.
The design and operation of energy systems are key issues for matching energy supply and demand. A systematic procedure, including process design and energy integration techniques for sizing and operation optimization of poly-generation technologies is presented in this paper. The integration of biomass resources as well as a simultaneous multi-objective and multi-period optimization, are the novelty of this work. Considering all these concepts in an optimization model makes it difficult to solve. The decomposition approach is used to deal with this complexity.Several options for integrating biomass in the energy system, namely back pressure steam turbines, biomass rankine cycles (BRC), biomass integrated gasification gas engines (BIGGE), biomass integrated gasification gas turbines, production of synthetic natural gas (SNG) and biomass integrated gasification combined cycles (BIGCC), are considered in this paper. The goal is to simultaneously minimize costs and CO2 emission using multi-objective evolutionary algorithms (EMOO) and Mixed Integer Linear Programming (MILP).Finally the proposed model is demonstrated by means of a case study. The results show that the simultaneous production of electricity and heat with biomass and natural gas are reliable upon the established assumptions. Furthermore, higher primary energy savings and CO2 emission reduction, 40%, are obtained through the gradual increase of renewable energy sources as opposed to natural gas usage. However, higher economic profitability, 52%, is achieved with natural gas-based technologies.  相似文献   

7.
Bioenergy is regarded as cost-effective option to reduce CO2 emissions from fossil fuel combustion. Among newly developed biomass conversion technologies are biomass integrated gas combined cycle plants (BIGCC) as well as ethanol and methanol production based on woody biomass feedstock. Furthermore, bioenergy systems with carbon capture and storage (BECS) may allow negative CO2 emissions in the future. It is still not clear which woody biomass conversion technology reduces fossil CO2 emissions at least costs. This article presents a spatial explicit optimization model that assesses new biomass conversion technologies for fuel, heat and power production and compares them with woody pellets for heat production in Austria. The spatial distributions of biomass supply and energy demand have significant impact on the total supply costs of alternative bioenergy systems and are therefore included in the modeling process. Many model parameters that describe new bioenergy technologies are uncertain, because some of the technologies are not commercially developed yet. Monte-Carlo simulations are used to analyze model parameter uncertainty. Model results show that heat production with pellets is to be preferred over BIGCC at low carbon prices while BECS is cost-effective to reduce CO2 emissions at higher carbon prices. Fuel production – methanol as well as ethanol – reduces less CO2 emissions and is therefore less cost-effective in reducing CO2 emissions.  相似文献   

8.
A life-cycle assessment (LCA) of corn ethanol was conducted to determine the reduction in the life-cycle greenhouse gas (GHG) emissions for corn ethanol compared to gasoline by integrating biomass fuels to replace fossil fuels (natural gas and grid electricity) in a U.S. Midwest dry-grind corn ethanol plant producing 0.19 hm3 y−1 of denatured ethanol. The biomass fuels studied are corn stover and ethanol co-products [dried distillers grains with solubles (DDGS), and syrup (solubles portion of DDGS)]. The biomass conversion technologies/systems considered are process heat (PH) only systems, combined heat and power (CHP) systems, and biomass integrated gasification combined cycle (BIGCC) systems. The life-cycle GHG emission reduction for corn ethanol compared to gasoline is 38.9% for PH with natural gas, 57.7% for PH with corn stover, 79.1% for CHP with corn stover, 78.2% for IGCC with natural gas, 119.0% for BIGCC with corn stover, and 111.4% for BIGCC with syrup and stover. These GHG emission estimates do not include indirect land use change effects. GHG emission reductions for CHP, IGCC, and BIGCC include power sent to the grid which replaces electricity from coal. BIGCC results in greater reductions in GHG emissions than IGCC with natural gas because biomass is substituted for fossil fuels. In addition, underground sequestration of CO2 gas from the ethanol plant’s fermentation tank could further reduce the life-cycle GHG emission for corn ethanol by 32% compared to gasoline.  相似文献   

9.
In this paper the trade-off, in terms of annual net profit for the mill and global emissions of CO2, between different technology pathways for utilization of excess steam and heat at kraft pulp mills is investigated for a case depicting a typical Scandinavian mill of today. The trade-off is analysed for four future energy market scenarios having different levels of CO2 charge. The technology pathways included in this study are increased electricity production in new turbines, production of district heating, increased sales of biomass in the form of bark and/or lignin, and carbon capture and storage (CCS). The results show that the proven pathways, increased electricity production, bark export and district heating production, are economically robust, i.e. they are profitable for all of the studied energy market scenarios. The new and emerging technology pathways, that are CCS and lignin extraction, hold a larger potential for reduction of global CO2 emissions, but their economic profitability is more dependent on the development of the energy market. All in all, it can be concluded that to realize the larger potential of reduction of global CO2 emissions a high carbon cost alone may not be sufficient. Other economic stimulations are required, e.g. technology-specific subsidies.  相似文献   

10.
The operation of a district heating system depends on the heat load demand, which varies throughout the year. In this paper, we analyze the coproduction of district heat and electricity or biomotor fuels. We demonstrate how three different taxation scenarios and two crude oil price levels influence the selection of production units to minimize the district heat production cost and calculate the resulting primary energy use. Our analysis is based on the annual measured heat load of a district heating system. The minimum-cost district heat production system comprises different production units that meet the district heat demand and simultaneously minimize the district heat production cost. First, we optimize the cost of a district heat production system based on the cogeneration of electricity and heat with and without biomass integrated gasification combined-cycle technology. We considered cogenerated electricity as a byproduct with the value of that produced by a condensing power plant. Next, we integrate and optimize different biomotor fuel production units into the district heat production system by considering biomotor fuels as byproducts that can substitute for fossil motor fuels. We demonstrate that in district heating systems, the strengthening of environmental taxation reduces the dependence on fossil fuels. However, increases in environmental taxation and the crude oil price do not necessarily influence the production cost of district heat as long as biomass price is not driven by policy measures. Biomotor fuel production in a district heating system is typically not cost-efficient. The biomotor fuels produced from the district heating system have to compete with those from standalone biomotor fuel plants and also with its fossil-based counterparts. This is also true for high oil prices. A carbon tax on fossil CO2 emissions based on social cost damage will increase the competitiveness of biomass-based combined heat and power plants, especially for BIGCC technology with its high electricity-to-heat ratio.  相似文献   

11.
Animal waste is an important source of anthropogenic GHG emissions, and in most cases, manure is managed by land application. Nevertheless, due to the huge amounts of manure produced annually, alternative manure management practices have been proposed, one of which is gasification, aimed to convert manure into clean energy-syngas. Syngas can be utilized to provide energy or power. At the same time, the byproduct of gasification, biochar, can be transported back to fields as a soil amendment. Environmental impacts are crucial in selecting the appropriate manure strategy. Therefore, GHG emissions during manure management systems (land application and gasification) were evaluated and compared by life cycle assessment (LCA) in our study. LCA is a universally accepted tool to determine GHG emissions associated with every stage of a system. Results showed that the net GHG emissions in land application scenario and gasification scenario were 119 and -643 kg CO2-eq for one tonne of dry feedlot manure, respectively. Moreover, sensitive factors in the gasification scenario were efficiency of the biomass integrated gasification combined cycle (BIGCC) system and energy source of avoided electricity generation. Overall, due to the environmental effects of syngas and biochar, gasification of feedlot manure is a much more promising technique as a way to reduce GHG emissions than is land application.  相似文献   

12.
The iron and steel industry is the second largest user of energy in the world industrial sector and is currently highly dependent on fossil fuels and electricity. Substituting fossil fuels with renewable energy in the iron and steel industry would make an important contribution to the efforts to reduce emissions of CO2. However, different approaches to assessing CO2 emissions from biomass and electricity use generate different results when evaluating how fuel substitution would affect global CO2 emissions. This study analyses the effects on global CO2 emissions when substituting liquefied petroleum gas with synthetic natural gas, produced through gasification of wood fuel, as a fuel in reheating furnaces at a scrap-based steel plant. The study shows that the choice of system perspective has a large impact on the results. When wood fuel is considered available for all potential users, a fuel switch would result in reduced global CO2 emissions. However, applying a perspective where wood fuel is seen as a limited resource and alternative use of wood fuel is considered, a fuel switch could in some cases result in increased global CO2 emissions. As an example, in one of the scenarios studied, a fuel switch would reduce global CO2 emissions by 52 ktonnes/year if wood fuel is considered available for all potential users, while seeing wood fuel as a limited resource implies, in the same scenario, increased CO2 emissions by 70 ktonnes/year. The choice of method for assessing electricity use also affects the results.  相似文献   

13.
In this paper the trade-off between internal and external use of excess heat from a kraft pulp mill is investigated for four different future energy market scenarios. The work follows the methodology described in Svensson et al. [2008. Excess heat from kraft pulp mills: trade-offs between internal and external use in the case of Sweden—Part 1: methodology. Energy Policy, submitted for publication], where a systematic approach is proposed for investigating the potential for profitable excess heat cooperation. The trade-off is analyzed by economic optimization of an energy system model consisting of a pulp mill and an energy company (ECO). In the model, investments can be made, which increase the system's energy efficiency by utilization of the mill's excess heat, as well as investments that increase the electricity production. The results show that the trade-off depends on energy market prices, the district heating demand and the type of existing heat production. From an economic point of view, external use of the excess heat is preferred for all investigated energy market scenarios if the mill is studied together with an ECO with a small heat load. For the cases with medium or large district heating loads, the optimal use of excess heat varies with the energy market price scenarios. However, from a CO2 emissions perspective, external use is preferred, giving the largest reduction of global emissions in most cases.  相似文献   

14.
This paper compares different energy‐related investment options that can be implemented in a kraft pulp mill with a potential steam surplus. The options investigated include lignin extraction, electricity production, capturing of CO2 and black liquor gasification with production of electricity or biofuels, here DME. The investment options are compared with respect to annual net profit and global CO2 emissions for different future energy market scenarios. A further analysis of how different parameters such as policy instruments and investment costs affect the different technologies also is included. The results show that, generally, for reasonable levels of biofuel support, the best economic performance among the studied technologies is achieved by extraction of lignin valued as oil. However, if the level of support for biofuels is high, black liquor gasification with DME production generally has the best economic performance among the studied options. All the investment options investigated decrease global CO2 emissions significantly. Capturing and storing CO2 from the recovery boiler flue gases result in the highest CO2 emissions reduction and also is an economically attractive option in scenarios with a high CO2 emissions charge. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
When gasified black liquor is used for hydrogen production, significant amounts of biomass must be imported. This paper compares two alternative options for producing hydrogen from biomass: (A) pulp-mill-integrated hydrogen production from gasified back liquor; and (B) stand-alone production of hydrogen from gasified biomass. The comparison assumes that the same amount of biomass that is imported in Alternative A is supplied to a stand-alone hydrogen production plant and that the gasified black liquor in Alternative B is used in a black liquor gasification combined cycle (BLGCC) CHP unit. The comparison is based upon equal amounts of black liquor fed to the gasifier, and identical steam and power requirements for the pulp mill. The two systems are compared on the basis of total CO2 emission consequences, based upon different assumptions for the reference energy system that reflect different societal CO2 emissions reduction target levels. Ambitions targets are expected to lead to a more CO2–lean reference energy system, in which case hydrogen production from gasified black liquor (Alternative A) is best from a CO2 emissions’ perspective, whereas with high CO2 emissions associated with electricity production, hydrogen from gasified biomass and electricity from gasified black liquor (Alternative B) is preferable.  相似文献   

16.
A new biomass integrated gasification combined cycle (BIGCC), which featured an innovative two-stage enriched air gasification system coupling a fluidized bed with a swirl-melting furnace, was proposed and built for clean and efficient biomass utilization. The performance of biomass gasification and power generation under various operating conditions was assessed using a comprehensive Aspen Plus model for system optimization. The model was validated by pilot-scale experimental data and gas turbine regulations, showing good agreement. Parameters including oxygen percentage of enriched air (OP), gasification temperature, excess air ratio and compressor pressure ratio were studied for BIGCC optimization. Results showed that increase OP could effectively improve syngas quality and two-stage gasification efficiency, enhancing the gas turbine inlet and outlet temperature. The maximum BIGCC fuel utilization efficiency could be obtained at OP of 40%. Increasing gasification temperature showed a negative effect on the two-stage gasification performance. For efficient BIGCC operation, the excess air ratio should be below 3.5 to maintain a designed gas turbine inlet temperature. Modest increase of compressor pressure ratio favored the power generation. Finally, the BIGCC energy analysis further proved the rationality of system design and sufficient utilization of biomass energy.  相似文献   

17.
Biomass gasification is considered a key technology in reaching targets for renewable energy and CO2 emissions reduction. This study evaluates policy instruments affecting the profitability of biomass gasification applications integrated in a Swedish district heating (DH) system for the medium-term future (around year 2025). Two polygeneration applications based on gasification technology are considered in this paper: (1) a biorefinery plant co-producing synthetic natural gas (SNG) and district heat; (2) a combined heat and power (CHP) plant using integrated gasification combined cycle technology. Using an optimisation model we identify the levels of policy support, here assumed to be in the form of tradable certificates, required to make biofuel production competitive to biomass based electricity generation under various energy market conditions. Similarly, the tradable green electricity certificate levels necessary to make gasification based electricity generation competitive to conventional steam cycle technology, are identified. The results show that in order for investment in the SNG biorefinery to be competitive to investment in electricity production in the DH system, biofuel certificates in the range of 24–42 EUR/MWh are needed. Electricity certificates are not a prerequisite for investment in gasification based CHP to be competitive to investment in conventional steam cycle CHP, given sufficiently high electricity prices. While the required biofuel policy support is relatively insensitive to variations in capital cost, the required electricity certificates show high sensitivity to variations in investment costs. It is concluded that the large capital commitment and strong dependency on policy instruments makes it necessary that DH suppliers believe in the long-sightedness of future support policies, in order for investments in large-scale biomass gasification in DH systems to be realised.  相似文献   

18.
The improvement of energy efficiency is seen as one of the most promising measures for reducing global CO2 emissions. However, the emission reduction potential may seem different from the industrial plant and policy-maker’s perspectives. This paper evaluates the influences of process heat conservation on CHP electricity production, primary energy consumption and CO2 emissions from both the mill site and national perspectives. The results indicate that heat conservation in an industrial process may lead to varying results in primary energy consumption and CO2 emissions, depending on the form of marginal heat production used at the mill site. In the CHP process, reduction of the heat load lowers electricity production, and this reduction may have to be compensated for at the national level. Therefore, the energy conservation potential in industry has to be evaluated by taking into account the connections to the outside society, which means that a wider system boundary than a mill site has to be used. This study demonstrates by theoretical analysis and case mill studies the magnitude of the effects of system boundary definition when evaluating the contribution of an individual energy efficiency investment towards fulfilling the commitment to reduce CO2 emissions at the national level.  相似文献   

19.
Specific energy consumption (SEC) is an energy efficiency indicator widely used in industry for measuring the energy efficiency of different processes. In this paper, the development of energy efficiency and CO2 emissions of steelmaking is studied by analysing the energy data from a case mill. First, the specific energy consumption figures were calculated using different system boundaries, such as the process level, mill level and mill site level. Then, an energy efficiency index was developed to evaluate the development of the energy efficiency at the mill site. The effects of different production conditions on specific energy consumption and specific CO2 emissions were studied by PLS analysis. As theory expects, the production rate of crude steel and the utilisation of recycled steel were shown to affect the development of energy efficiency at the mill site. This study shows that clearly defined system boundaries help to clarify the role of on-site energy conversion and make a difference between the final energy consumption and primary energy consumption of an industrial plant with its own energy production.  相似文献   

20.
Novel approaches to practice CO2 enrichment in greenhouses from the exhaust gas of a biomass heating system are reviewed. General CO2 enrichment benefits for greenhouse plant production are described along with optimal management strategies to reduce fuel consumption while improving benefits. Alternative and renewable fuels for CO2 enrichment, landfill biogas and biomass, are compared with traditional methods and fuels. Exhaust gas composition is outlined to address the challenges of CO2 enrichment from biomass combustion and leads to a comparison between combustion and gasification to improve boiler efficiency. In terms of internal modifications to a biomass heating system, syngas combustion, following biomass gasification, presents good potential to achieve CO2 enrichment. Regarding external modifications to clean the exhaust gas, CO2 can be extracted from flue gases via membrane separation that has shown a lot of potential for large industries trying to reduce and isolate CO2 emissions for sequestration. Other research has optimized wet scrubbing systems by extracting SO2 and NO emissions from flue gases to form ammonium sulphate as a by-product valuable to fertilizer markets. The potential of these techniques are reviewed while future research directions are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号