首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 8 毫秒
1.
A modified three-dimensional finite difference model for the borehole ground heat exchangers of a ground-source heat pump (GSHP) system was developed which accounted for multiple ground layers with different thermal properties in the borefield at no groundwater flow. The present model was used to investigate the impact of ignoring ground layers in the thermal response test (TRT) analysis and the subsequent system simulation. It was found that the adoption of an effective ground thermal conductivity and an effective ground volumetric heat capacity for a multi-layer ground determined from a TRT analysis led to very little error in the simulated long term system performance under various ground compositions investigated. The maximum difference occurred for a 3 × 3 borefield in a dual-layer ground which measured 0.5 °C or 3.9% in the rise of the borefield fluid leaving temperature with a cooling-dominated loading profile for 10 years. With the same borefield and ground composition, a dynamic simulation of the complete GSHP system was performed using the TRNSYS simulation software. It was found that the overall system performance based on the present and the old models differed very little. It was concluded that the assumption of a homogeneous ground in a TRT analysis and subsequent system simulation was appropriate and impact of ignoring ground layers was small. A single-ground-layer model, including the analytical models, was sufficient even for a multi-layer ground. This could reduce the computation time significantly, especially when simulating a large borefield.  相似文献   

2.
The influence of the thermosiphon effect on the thermal response test   总被引:1,自引:0,他引:1  
The issue of natural and forced groundwater movements, and its effect on the performance of ground heat exchangers is of great importance for the design and sizing of borehole thermal energy systems (BTESs). In Scandinavia groundwater filled boreholes in hard rock are commonly used. In such boreholes one or more intersecting fractures provide a path for groundwater flow between the borehole and the surrounding rock. An enhanced heat transport then occurs due to the induced convective water flow, driven by the volumetric expansion of heated water. Warm groundwater leaves through fractures in the upper part of the borehole while groundwater of ambient temperature enters the borehole through fractures at larger depths. This temperature driven flow is referred to as thermosiphon, and may cause considerable increase in the heat transport from groundwater filled boreholes. The thermosiphon effect is connected to thermal response tests, where the effective ground thermal conductivity is enhanced by this convective transport. Strong thermosiphon effects have frequently been observed in field measurements. The character of this effect is similar to that of artesian flow through boreholes.  相似文献   

3.
In this paper different approaches to groundwater flow and its effect in the vicinity of a borehole ground heat exchanger are discussed. The common assumption that groundwater flow in hard rock may be modelled as a homogeneous flow in a medium with an effective porosity is confronted and models for heat transfer due to groundwater flow in fractures and fracture zones are presented especially from a thermal response test point of view. The results indicate that groundwater flow in fractures even at relatively low specific flow rates may cause significantly enhanced heat transfer, although a continuum approach with the same basic assumptions would suggest otherwise.  相似文献   

4.
Borehole thermal resistance and ground thermal properties (thermal conductivity and heat capacity) are the key parameters to implement the ground source heat pump (GSHP), usually obtained by thermal response test. In this study, a novel sequential parameters estimation method for the above three parameters is proposed, and the sensitivity analysis by using a special correlation method is performed to decide the best estimation sequences. At first, the Spearman partial rank correlation coefficient was used to represent the correlation between the estimated thermal properties and fluid temperature for the line source model (ILS), then the estimation sequence for the three parameters could be determined by the correlation results. Lastly, with the estimation step, Monte Carlo method was adopted to determine the parameters replacing conventional iterative algorithms. In addition, the effect of value bounds and initial inputs as well as random samples was investigated. The results showed that compared to the other estimation steps, the estimation sequence following borehole resistance firstly, then thermal conductivity, heat capacity lastly could get the best precision with 4.5%, 0.4%, 1% respectively. Specially, the estimation precision for ground heat capacity could be promoted by the sequential estimation. Also, the effect of value bounds on estimation precision was nearly eliminated by the proposed method.  相似文献   

5.
In this study, a series of computational fluid dynamics (CFD) numerical analyses was performed in order to evaluate the performance of six full‐scale closed‐loop vertical ground heat exchangers constructed in a test bed located in Wonju, South Korea. The high‐density polyethylene pipe, borehole grouting and surrounding ground formation were modeled using FLUENT, a finite‐volume method program, for analyzing the heat transfer process of the system. Two user‐defined functions accounting for the difference in the temperatures of the circulating inflow and outflow fluid and the variation of the surrounding ground temperature with depth were adopted in the FLUENT model. The relevant thermal properties of materials measured in laboratory were used in the numerical analyses to compare the thermal efficiency of various types of the heat exchangers installed in the test bed. The numerical simulations provide verification for the in‐situ thermal response test (TRT) results. The numerical analysis with the ground thermal conductivity of 4.0 W/m?K yielded by the back‐analysis was in better agreement with the in‐situ TRT result than with the ground thermal conductivity of 3.0 W/m?K. From the results of CFD back‐analyses, the effective thermal conductivities estimated from both the in‐situ TRT and numerical analysis are smaller than the ground thermal conductivity (=4.0 W/m?K) that is input in the numerical model because of the intrinsic limitation of the line source model that simplifies a borehole assemblage as an infinitely long line source in the homogeneous material. However, the discrepancy between the ground thermal conductivity and the effective thermal conductivity from the in‐situ TRT decreases when borehole resistance decreases with a new three pipe‐type heat exchanger leads to less thermal interference between the inlet and outlet pipes than the conventional U‐loop type heat exchanger. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Ground source heat pump systems often use vertical boreholes to exchange heat with the ground. Two areas of active research are the development of models to predict the thermal performance of vertical boreholes and improved procedures for analysis of in situ thermal conductivity tests, commonly known as thermal response tests (TRT). Both the models and analysis procedures ultimately need to be validated by comparing them to actual borehole data sets. This paper describes reference data sets for researchers to test their borehole models. The data sets are from a large laboratory “sandbox” containing a borehole with a U-tube. The tests are made under more controlled conditions than can be obtained in field tests. Thermal response tests on the borehole include temperature measurements on the borehole wall and within the surrounding soil, which are not usually available in field tests. The test data provide independent values of soil thermal conductivity and borehole thermal resistance for verifying borehole models and TRT analysis procedures. As an illustration, several borehole models are compared with one of the thermal response tests.  相似文献   

7.
This paper presents a method of subtracting the effect of atmospheric conditions from thermal response test (TRT) estimates by using data on the ambient air temperature. The method assesses effective ground thermal conductivity within 10% of the mean value from the test, depending on the time interval chosen for the analysis, whereas the estimated value can vary by a third if energy losses outside the borehole are neglected. Evaluating the same test data using the finite line-source (FLS) model gives lower values for the ground thermal conductivity than for the infinite line-source (ILS) model, whether or not heat dissipation to ambient air is assumed.  相似文献   

8.
This paper presents energy, exergy and uncertainty analyses for the thermal response test of a ground heat exchanger. In this study, a vertical U‐shaped ground heat exchanger with 80 m depth and 20 cm borehole diameter is installed for the first time at the university premises in Saudi Arabia. A mobile thermal response apparatus is constructed and used to measure the performance of the ground heat exchanger. The thermal response test was carried out four times at different thermal loads from September 2007 to April 2008. The energy and exergy transports of these thermal response tests were analyzed using the experimental results obtained in this period. The analysis provides a better understanding of the overall performance of vertical ground heat exchangers, verifies the thermal response test results and improves the experimental setup. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Support vector machines (SVM), a soft programming technique, has been used to estimate the temperature distribution and flow fields in a square porous enclosure heated discretely by three isothermal heaters from the left vertical wall. Right vertical wall of the cavity was isothermal but it has colder temperature than the heaters while remaining walls were adiabatic. A database was prepared by solving the governing equations which were written using Darcy flow model. Using finite difference method to discretize the equation, a computational fluid dynamics (CFD) code was written. A correlation was developed between Nusselt and Rayleigh numbers. Using obtained database, further values of temperature and velocities were estimated by SVM technique at different Rayleigh numbers and locations of heater. It was observed that SVM was a useful technique on estimation of streamlines and isotherms. Thus, SVM reduces the computational time and helps to solve some cases when CFD fails to solve due to numerical instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号