首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of liquid water in a polymer electrolyte membrane fuel cell hinders gas diffusion to the active sites, which results in large concentration overpotentials and instability of the fuel cell performance. In this paper, a new customized gas diffusion layer (GDL) is presented that enhances liquid water transport from the electrode to the gas channels and therefore lowers mass transport losses of oxygen through the porous media. The GDL is systematically modified by laser-perforation with respect to the flow field design. The holes are characterized by SEM images. The performance of the laser-treated GDL was investigated in a small test fuel cell with a reference electrode by voltammetry and chronoamperometry measurements and compared to corresponding data with a non-modified GDL. Voltammetry experiments with different humidification levels of the inlet gases were conducted. In all cases, the cathode overpotential with the perforated GDL clearly shows reduced saturation which can be seen in a lower overpotential in the region limited by mass transport resulting in a higher limiting current density. The investigated current response of the chronoamperometry measurements clearly shows a better dynamic and overall performance of the test cell with the perforated GDL.  相似文献   

2.
A highly reliable experimental system that consistently closed the overall water balance to within 5% was developed to study the role of a microporous layer (MPL), attached to carbon paper porous transport layer (PTL), on the water transport and performance of a standard 100 cm2 active area PEM fuel cell. Various combinations of cells were built and tested with PTLs at the electrodes using either carbon fibre paper with a MPL (SGL 10BB) or carbon fibre paper without a MPL (SGL 10BA). The net water drag coefficient at three current densities (0.3, 0.5 and 0.7 A cm−2) for two combinations of anode/cathode relative humidity (60/100% and 100/60%) and stoichiometric ratios of H2/air (1.4/3 and 1.4/2) was determined from water balance measurements. The addition of a MPL to the carbon fibre paper PTL at the cathode did not cause a statistically significant change to the overall drag coefficient although there was a significant improvement to the fuel cell performance and durability when a MPL was used at the cathode. The presence of a MPL on either electrode or on both electrodes also exhibited similar performance compared to when the MPL was placed at the cathode. These results indicate that the presence of MPL indeed improves the cell performance although it does not affect the net water drag coefficient. The correlation between cell performance and global water transport cannot be ascertained and warrants further experimental investigation.  相似文献   

3.
This work explores how the degradation of the gas diffusion layer (GDL) under compression contributes to the formation of preferential pathways for water transport. Fluorescence microscopy is used to provide ex situ visualization of liquid water transport through the GDL placed beneath an optically transparent clamping plate. Transient image data obtained with a CCD camera indicates that areas of compression in the GDL coincide with preferential pathways for water transport and break-through. Preferential flow of water through the smaller pores resulting from GDL compression is contrary to the expected behaviour in a hydrophobic medium, and this suggests a loss of hydrophobicity. Scanning electron microscopy (SEM) is used to investigate the effect of compression on the morphology of the GDL. These SEM images show that compressing the GDL causes the breakup of fibers and, indeed, deterioration of the hydrophobic coating.  相似文献   

4.
A multi-dimensional two-phase PEM fuel cell model, which is capable of handling the liquid water transport across different porous materials, including the catalyst layer (CL), the micro-porous layer (MPL), and the macro-porous gas diffusion medium (GDM), has been developed and applied in this paper for studying the liquid water transport phenomena with consideration of the MPL. Numerical simulations show that the liquid water saturation would maintain the highest value inside the catalyst layer while it possesses the lowest value inside the MPL, a trend consistent qualitatively with the high-resolution neutron imaging data. The present multi-dimensional model can clearly distinguish the different effects of the current-collecting land and the gas channel on the liquid water transport and distribution inside a PEM fuel cell, a feature lacking in the existing one-dimensional models. Numerical results indicate that the MPL would serve as a barrier for the liquid water transport on the cathode side of a PEM fuel cell.  相似文献   

5.
The performance of a polymer electrolyte membrane (PEM) fuel cell is significantly affected by liquid water generated at the cathode catalyst layer (CCL) potentially causing water flooding of cathode; while the ionic conductivity of PEM is directly proportional to its water content. Therefore, it is essential to maintain a delicate water balance, which requires a good understanding of the liquid water transport in the PEM fuel cells. In this study, a one-dimensional analytical solution of liquid water transport across the CCL is derived from the fundamental transport equations to investigate the water transport in the CCL of a PEM fuel cell. The effect of CCL wettability on liquid water transport and the effect of excessive liquid water, which is also known as “flooding”, on reactant transport and cell performance have also been investigated. It has been observed that the wetting characteristic of a CCL plays significant role on the liquid water transport and cell performance. Further, the liquid water saturation in a hydrophilic CCL can be significantly reduced by increasing the surface wettability or lowering the contact angle. Based on a dimensionless time constant analysis, it has been shown that the liquid water production from the phase change process is negligible compared to the production from the electrochemical process.  相似文献   

6.
Back-diffusion in PEM fuel cells is the water transport mechanism contributing to balance the water content profile in the membrane (in the through-plane direction), transporting water molecules from the cathode electrode towards the anode side of the membrane. In this technical note, neutron radiographs are presented for a 50 cm2 N-117 fuel cell with serpentine flow field, where the effect of the back diffusion transport mechanism is clearly identified, in the form of crossed patterns following the cross-flow layout of the flow field. The back diffusion water transport is evident despite the high thickness of the N-117 membrane.  相似文献   

7.
In this paper, a two-phase two-dimensional PEM fuel cell model, which is capable of handling liquid water transport across different porous materials, is employed for parametric studies of liquid water transport and distribution in the cathode of a PEM fuel cell. Attention is paid particularly to the coupled effects of two-phase flow and heat transfer phenomena. The effects of key operation parameters, including the outside cell boundary temperature, the cathode gas humidification condition, and the cell operation current, on the liquid water behaviors and cell performance have been examined in detail. Numerical results elucidate that increasing the fuel cell temperature would not only enhance liquid water evaporation and thus decrease the liquid saturation inside the PEM fuel cell cathode, but also change the location where liquid water is condensed or evaporated. At a cell boundary temperature of 80 °C, liquid water inside the catalyst layer and gas diffusion media under the current-collecting land would flow laterally towards the gas channel and become evaporated along an interface separating the land and channel. As the cell boundary temperature increases, the maximum current density inside the membrane would shift laterally towards the current-collecting land, a phenomenon dictated by membrane hydration. Increasing the gas humidification condition in the cathode gas channel and/or increasing the operating current of the fuel cell could offset the temperature effect on liquid water transport and distribution.  相似文献   

8.
Water management in a PEM fuel cell significantly affects the fuel cell performance and durability. The gas diffusion layer (GDL) of a PEM fuel cell plays a critical role in the water management process. In this short communication, we report a simple method to measure the water transport rate across the GDL. Water rejection rates across a GDL at different cathode air-flow rates were measured. Based on the measurement results, the fuel cell operating conditions, such as current density, temperature, air stoichiometry and relative humidity, corresponding to membrane drying and flooding conditions were identified for the particular GDL used. This method can help researchers develop GDLs for a particular fuel cell design with specific operating conditions and optimize the operation conditions for the given PEM fuel cell components.  相似文献   

9.
Two-phase transport in the cathode gas diffusion layer (GDL) of a proton exchange membrane fuel cell (PEMFC) is studied with a porosity gradient in the GDL. The porosity gradient is formed by adding micro-porous layers (MPL) with different carbon loadings on the catalyst layer side and on the flow field side. The multiphase mixture model is employed and a direct numerical procedure is used to analyze the profiles of liquid water saturation and oxygen concentration across the GDL as well as the resulting activation and concentration losses. The results show that a gradient in porosity will benefit the removal rate of liquid water and also enhance the transport of oxygen through the cathode GDL. The present study provides a theoretical support for the suggestion that a GDL with porosity gradient will improve the cell performance.  相似文献   

10.
Water management in cathode gas diffusion electrode (GDE) of polymer electrolyte fuel cell (PEFC) is essential for high performance operation, because liquid water condensed in porous gas diffusion layer (GDL) and catalyst layer (CL) blocks oxygen transport to active reaction sites. In this study, the average liquid water content inside the cathode GDE of a low-temperature PEFC is experimentally and quantitatively estimated by the weight measurement, and the relationship between the water accumulation rate in the cathode GDE and the cell voltage is investigated. The liquid water behavior at the cathode is also visualized using an optical diagnostic, and the effects of operating conditions and GDL structures on the water transport in the cathode GDE are discussed. It is found that the liquid water content in the cathode GDE increases remarkably after starting the fuel cell operation due to the water production at the CL. At a high current density, the cell voltage drops suddenly after starting the operation in spite of a low water content in the cathode GDE. When the GDL thickness is increased, much water accumulates near the cathode CL and the fuel cell shuts down immediately after the operation. In the final section of this paper, the structure of cathode GDL that has several grooves for water removal is proposed to prevent water flooding and improve fuel cell performance. This groove structure is effective to promote the removal of the liquid water accumulated near the active catalyst sites.  相似文献   

11.
A three-dimensional unsteady two-phase model for the cathode side of proton exchange membrane fuel cell (PEMFC) consisting of gas diffusion layer (GDL) with hybrid structural model is developed to investigate liquid water behaviors under different operating and geometrical conditions and to quantitatively evaluate effects of liquid water distribution on reactant transport and current density distribution. Simulation results reveal that liquid water transport processes and distributions are significantly affected by inlet air velocity, wall wettability and water inlet position, which in turn play a prominent role on local reactant transport and cause considerable disturbances of the current density. Liquid water film spreading on the gas channel (GC) top wall is identified as the most desirable flow pattern in the GC based on overall evaluations of current density magnitude, uniformity of current density distribution and pressure drop in the GC. Modification to GDL structure is proposed to promote the formation of the desirable flow pattern.  相似文献   

12.
Flooding of the membrane electrode assembly (MEA) and dehydrating of the polymer electrolyte membrane have been the key problems to be solved for polymer electrolyte membrane fuel cells (PEMFCs). So far, almost no papers published have focused on studies of the liquid water flux through differently structured gas diffusion layers (GDLs). For gas diffusion layers including structures of uniform porosity, changes in porosity (GDL with microporous layer (MPL)) and gradient change porosity, using a one-dimensional model, the liquid saturation distribution is analyzed based on the assumption of a fixed liquid water flux through the GDL. And then the liquid water flux through the GDL is calculated based on the assumption of a fixed liquid saturation difference between the interfaces of the catalyst layer/GDL and the GDL/gas channel. Our results show that under steady-state conditions, the liquid water flux through the GDL increases as contact angle and porosity increase and as the GDL thickness decreases. When a MPL is placed between the catalyst layer and the GDL, the liquid saturation is redistributed across the MPL and GDL. This improves the liquid water draining performance. The liquid water flux through the GDL increases as the MPL porosity increases and the MPL thickness decreases. When the total thickness of the GDL and MPL is kept constant and when the MPL is thinned to 3 μm, the liquid water flux increases considerably, i.e. flooding of MEA is difficult. A GDL with a gradient of porosity is more favorable for liquid water discharge from catalyst layer into the gas channel; for the GDLs with the same equivalent porosity, the larger the gradient is, the more easily the liquid water is discharged. Of the computed cases, a GDL with a linear porosity 0.4x + 0.4 is the best.  相似文献   

13.
The influences of the gas diffusion layer (GDL) properties on the current distributions of a direct methanol fuel cell are investigated. Cathode GDLs with different hydrophobicity/hydrophilicity, air permeability, microporous layer (MPL), thickness, and texture properties are examined. Among the GDLs examined, a thin hydrophobic GDL with an MPL has the most homogeneous current distribution, which is primarily ascribed to the better water management capabilities of the cathode GDL properties. The differences in the current distribution among the different GDLs are more apparent when the air flow rate and loaded current are lower. The effect of the membrane thickness on the current distributions is also investigated. Among the membranes examined, Nafion® 112 has different current distributions from the others, whereas there is no noticeable difference between the current distributions with Nafion® 115 and Nafion® 117. The current distribution with Nafion® 112 is most affected by the enhanced methanol crossover and the high mixed potential.  相似文献   

14.
A mathematical model is developed to investigate the influence of porosity configurations in the gas diffusion layer (GDL) of the cathode on the electrochemical performance characteristics of a 3-D high-temperature proton exchange membrane (PEM) fuel cell. Four different non-uniform porosity configurations are defined through step functions and analyzed with uniform porosity case. The results are presented in terms of the cell performance characteristics viz. Current density, power density, vorticity magnitude, oxygen molar concentration, overpotential, and total power dissipation density. Our study reveals that oxygen molar concentration, current density, power density are found to be maximum when the stepwise porosity in GDL decreases in the streamwise direction. However, these parameters observed to be the least when the stepwise porosity in GDL increases along the streamwise direction. Additionally, the highest total power dissipation density is observed when the porosity in GDL varies across cross-stream wise direction among other configurations considered. However, it is found to be the least when porosity varies in a streamwise direction. The overpotential becomes the least when stepwise porosity decreases in the streamwise direction although the same is found to be maximum when the porosity in GDL increases along the streamwise direction. The performance is found to be optimal when porosity is maximum at cathode gas channel inlet and GDL-cathode gas channel interface.  相似文献   

15.
Simulation of species transport and water management in PEM fuel cells   总被引:1,自引:0,他引:1  
A single phase computational fuel cells model is presented to elucidate three-dimensional interactions between mass transport and electrochemical kinetics in proton exchange membrane (PEM) fuel cells with straight gas channels. The governing differential equations are solved over a single computational domain, which consists of a gas channel, gas diffusion layer, and catalyst layer for both the anode and cathode sides of the cell as well as the solid polymer membrane. Emphasis is placed on obtaining a basic understanding of how three-dimensional flow and transport phenomena in the air cathode impact the electrochemical process in the flow field. The complete cell model has been validated against experimentally measured polarization curve, showing good accuracy in reproducing cell performance over moderate current density interval. Fully three-dimensional results of the flow structure and species profiles are presented for cathode flow field. The effects of pressure on oxygen transport and water removal are illustrated through main axis of the flow structure. The model results indicate that oxygen concentration in reaction sites is significantly affected by pressure increase which leads to rising fuel cells power.  相似文献   

16.
Water management is one of the important factors which determine the performance of a Proton Exchange Membrane (PEM) fuel cell using hydrogen as fuel. For developing efficient water management systems, it is important to know the potential locations of formation and the nature of distribution of liquid water in the fuel cell. In the present study a PEM fuel cell with three different types of flow distributors are modeled and numerically simulated to find out the water formation and distribution characteristics. The model is validated by comparing the simulated polarization curve to experimental data. It is found that the type of flow distributor used plays a major role in determining the distribution of liquid water in the cell. A parallel flow distributor exhibits poor water removal capabilities whereas a serpentine flow distributor exhibits better water removal. A mixed flow distributor is found to give better water distribution characteristics compared to the parallel and serpentine distributors. Further the effect of liquid water formation and distribution on the species transport, temperature distribution and current generation are also investigated.  相似文献   

17.
Water content in the membrane and the presence of liquid water in the catalyst layers (CL) and the gas diffusion layers (GDL) play a very important role in the performance of a PEM fuel cell. To study water transport in a PEM fuel cell, a two‐phase flow mathematical model is developed. This model couples the continuity equation, momentum conservative equation, species conservative equation, and water transport equation in the membrane. The modeling results of fuel cell performances agree well with measured experimental results. Then this model is used to simulate water transport and current density distribution in the cathode of a PEM fuel cell. The effects of operating pressure, cell temperature, and humidification temperatures on the net water transfer through the membrane, liquid water saturation, and current density distribution are studied. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(2): 89–100, 2006; Published online in Wiley InterScience ( www.interscience. wiley.com ). DOI 10.1002/htj.20107  相似文献   

18.
The effect of hydrophobic agent (PTFE) concentration in the microporous layer on the PEM fuel cell performance was investigated using mercury porosimetry, water permeation experiment, and electrochemical polarization technique. The mercury porosimetry and water permeation experiments indicated that PTFE increases the resistance of the water flow through the GDL due to a decrease of the MPL porosity and an increase of the volume fraction of hydrophobic pores. When air was used as an oxidant, a maximum fuel cell performance was obtained for a PTFE loading of 20 wt.%. The experimental polarization curves were quantitatively analyzed to determine the polarization resistances resulting from different physical and electrochemical processes in the PEM fuel cell. The polarization analysis indicated that the optimized PTFE content results in an effective water management (i.e., a balancing of water saturations in the catalyst layer and the gas diffusion layer), thereby improving the oxygen diffusion kinetics in the membrane-electrode assembly.  相似文献   

19.
In order to investigate the effect of capillary pressure on the transport of liquid water in the cathode gas diffusion layer (GDL) of a polymer electrolyte fuel cell, a one-dimensional steady-state mathematical model was developed, including the effect of temperature on the capillary pressure. Numerical results indicate that the liquid water saturation significantly increases with increases in the operating temperature of the fuel cell. An elevated operating temperature has an undesirable influence on the removal of liquid water inside the GDL. A reported peculiar phenomenon in which the flooding of the fuel cell under a high operating temperature and an over-saturated environment is more serious in a GDL combined with a micro-porous layer (MPL) than in a GDL without an MPL [Lim and Wang, Electrochim. Acta 49 (2004), 4149–4156] is explained based on the present analysis.  相似文献   

20.
The dynamic behavior of liquid water transport through the gas diffusion layer (GDL) of the proton exchange membrane fuel cell is studied with an ex-situ approach. The liquid water breakthrough pressure is measured in the region between the capillary fingering and the stable displacement on the drainage phase diagram. The variables studied are GDL thickness, PTFE/Nafion content within the GDL, GDL compression, the inclusion of a micro-porous layer (MPL), and different water flow rates through the GDL. The liquid water breakthrough pressure is observed to increase with GDL thickness, GDL compression, and inclusion of the MPL. Furthermore, it has been observed that applying some amount of PTFE to an untreated GDL increases the breakthrough pressure but increasing the amount of PTFE content within the GDL shows minimal impact on the breakthrough pressure. For instance, the mean breakthrough pressures that have been measured for TGP-060 and for untreated (0 wt.% PTFE), 10 wt.% PTFE, and 27 wt.% PTFE were 3589 Pa, 5108 Pa, and 5284 Pa, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号