首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monolithic capillary columns were prepared by copolymerization of styrene and divinylbenzene inside a 200-microm i.d. fused silica capillary using a mixture of tetrahydrofuran and decanol as porogen. With gradients of acetonitrile in 100 mM triethylammonium acetate, the synthesized columns allowed the rapid and highly efficient separation of single-stranded oligodeoxynucleotides and double-stranded DNA fragments by ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC). Compared with capillary columns packed with micropellicular, octadecylated poly-(styrene/divinylbenzene) particles, an improvement in column performance of approximately 40% was obtained, enabling the analysis of an 18-mer oligodeoxynucleotide with a column efficiency of more than 190000 plates per meter. The chromatographic separation system was on-line-coupled to electrospray ionization mass spectrometry (ESI-MS). To improve the mass spectrometric detectabilities, 25 mM triethylammonium bicarbonate was utilized as an ion-pair reagent at the cost of only little reduction in separation performance and acetonitrile was added postcolumn as the sheath liquid through the triaxial electrospray probe. High-quality mass spectra of femtomole amounts of 3-mer to 80-mer oligodeoxynucleotides were recorded showing very little cation adduction. Double-stranded DNA fragments ranging in size from 51 to 587 base pairs were separated and detected by IP-RP-HPLC-ESI-MS. Accurate mass determination by deconvolution of the mass spectra was feasible for DNA fragments up to the 267-mer with a molecular mass of 165 019, whereas the spectra of longer fragments were too complex for deconvolution because of incomplete separation due to overloading of the column. Finally, on-line IP-RP-HPLC tandem MS was applied to the sequencing of short oligodeoxynucleotides.  相似文献   

2.
Ion-pair reversed-phase high-performance liquid chromatography was successfully coupled to negative-ion electrospray ionization mass spectrometry by using 60 × 0.20 mm i.d. capillary columns packed with 2.3-μm micropellicular, octadecylated poly(styrene/divinylbenzene) particles as stationary phase and gradients of acetonitrile in 50 mM aqueous triethylammonium bicarbonate as mobile phase. Systematic variation of the eluent composition, such as concentration of ion-pair reagent, anion in the ion-pair reagent, solution pH, and acetonitrile concentration led to the conclusion that most parameters have opposite effects on chromatographic and mass spectrometric performances. The use of acetonitrile as sheath liquid enabled the rapid and highly efficient separation and detection of phosphorylated and nonphosphorylated oligonucleotides ranging in size from 8 to 40 nucleotides. High-quality full-scan mass spectra showing little cation adduction were acquired from which the molecular masses of the separated oligonucleotides were calculated with an accuracy of 0.011%. With calibration curves being linear over at least 2 orders of magnitude, the lower limits of detection for a oligodeoxythymidine 16-mer were 104 fmol with full scan and 710 amol with selected-ion-monitoring data acquisition. The potential of ion-pair reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry was demonstrated for mixed-sequence oligomers by the characterization of a reaction mixture from solid-phase synthesis of a 40-mer oligonucleotide.  相似文献   

3.
Tseng MC  Chen YR  Her GR 《Analytical chemistry》2004,76(21):6306-6312
A robust interface has been developed for interfacing micellar electrokinetic chromatography (MEKC) and nonvolatile buffer capillary electrophoresis (CE) to electrospray ionization mass spectrometry (ESI-MS). The interface consists of two parallel capillaries for separation (50 microm i.d. x 155 microm o.d.) and makeup (50 microm i.d. x 155 microm o.d.) housed within a larger capillary (530 microm i.d. x 690 microm o.d.). The capillaries terminate in a single tapered tip having a beveled edge. The use of a tapered beveled edge results in a greater tip orifice diameter (75 microm) than in a previous design from our laboratory (25 microm) that used a flat tip. While maintaining a similar optimum flow rate and consequently similar sample dilution, a 75-microm beveled emitter is more rugged than a 25-microm flat tip. Furthermore, the incorporation of a sheath liquid capillary allows the compositions of the final spray solution to be controlled. The application of this novel CE/ESI-MS interface was demonstrated for MEKC using mixtures of triazines (positive ion mode) and phenols (negative ion mode). The ability to perform CE/ESI-MS using a nonvolatile buffer was demonstrated by the analysis of gangliosides with a buffer consisting of 40 mM borate and 20 mM alpha-cyclodextrin.  相似文献   

4.
Genotyping based on short tandem repeat (STR) regions is used in human identification and parentage testing, gene mapping studies, cancer diagnostics, and diagnosis of hereditary diseases. Analysis of STR systems using slab gel electrophoresis requires lengthy and labor-intensive procedures. Therefore, alternative methods such as capillary electrophoresis or ion-pair reversed-phase high-performance liquid chromatography (IPRP HPLC) have been used to analyze DNA. IPRP HPLC offers an attractive substitute to gel electrophoresis for STR analysis because of the reduced analysis time, and there is no need for the waste disposal associated with radioisotopic, enzyme-linked, or fluorescence detection systems. We evaluated the use of IPRP HPLC for the sizing and typing of STR alleles from the HUMTHO1 locus. The IPRP HPLC conditions (column temperature, flow rate, percent organic modifier per minute) were optimized for the separation of PCR products. Using the optimized separation conditions, the alleles of the HUMTHO1 system were sized in their native state (double standard) with the use of internal markers. The typing results correlated 100% to accepted methods of DNA typing. The analysis time for the HUMTHO1 locus was less than 14 min, and the alleles could be peak captured for further examination following such as sequencing.  相似文献   

5.
The separation of the glycoforms of erythropoietin (EPO) by capillary electrophoresis (CE) was recently published as a monograph by the European Pharmacopoeia (European Pharmacopoeia 4 2002, 1316, 1123-1128). Although the experimental CE conditions employed a background electrolyte containing additives suitable for on-line UV-absorption detection, they were not appropriate for on-line mass spectrometry (MS) detection. In this work, an attempt was made to investigate experimental conditions employing volatile electrolyte systems to achieve the separation and characterization of EPO glycoforms using CE and ESI-MS methodologies. The influence of several operating conditions, such as the coating of the internal walls of the capillary as well as the composition, concentration, and the pH of the separation buffer were investigated. The results demonstrated that when the internal walls of the capillaries were permanently coated with Polybrene and a buffer electrolyte containing 400 mM of HAc-NH4Ac (acetic acid-ammonium acetate), pH 4.75, was used, a significantly reproducible separation was achieved for EPO glycoforms. Intact EPO was characterized by two mass spectrometry techniques: electrospray ionization (ESI-MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF-MS). The data demonstrated that MALDI-TOF-MS provided a good approximation to an average molecular mass of the EPO molecule. However, it was still necessary to carry out further separation of the intact EPO glycoforms in order to obtain molecular mass information when ESI-MS was used.  相似文献   

6.
Xiong W  Glick J  Lin Y  Vouros P 《Analytical chemistry》2007,79(14):5312-5321
An ion-pair reversed-phase nano-high-performance liquid chromatography (IP-RP-nano-HPLC) method using a monolithic poly(styrene-divinylbenzene) (PS-DVB) column coupled to nanoelectrospray ionization mass spectrometry (nano-ESI-MS) was evaluated to separate and identify isomeric oligonucleotide adducts derived from the covalent binding of (+/-)-anti-7r,8t-dihydroxy-9t,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(+/-)-anti-BPDE] to double-stranded (ds) 5'-PO4--ACCCGCGTCCGCGC-3'/5'-GCGCGGGCGCGGGT-3' oligonucleotide. The influence of three different nanospray emitters on electrospray signal was evaluated in terms of analyte ion sensitivity. The best nanoelectrospray performance for the oligonucleotides was observed with the distal metal-coated emitter. The performance of three different stationary phases was also investigated. The chromatographic separation performance of the polymeric monolithic PS-DVB stationary phase significantly surpassed that of columns packed with the microparticulate sorbents C18 or PS-DVB. Different mobile phase organic solvents and ion-pairing reagents were also evaluated. An optimized mobile phase consisting of methanol and 25 mM triethylammonium bicarbonate resulted in the best chromatographic resolution and increased MS sensitivity of the oligonucleotides. By using a monolithic PS-DVB stationary phase fabricated in a nanocolumn, four positional isomeric (+/-)-BPDE-oligonucleotide adducts were separated and identified. In addition to four of the possible five positional isomers, three positional isomers were also resolved to several diastereoisomers, although their stereostructures could not be identified in the absence of reference standards.  相似文献   

7.
The goal of characterization of the proteome, while challenging in itself, is further complicated by the microheterogeneity introduced by posttranslational modifications such as glycosylation. A combination of liquid chromatography (LC), capillary electrophoresis (CE), and mass spectrometry (MS) offers the advantages of unique selectivity and high efficiency of the separation methods combined with the mass specificity and sensitivity of MS. In the current work, the combination of liquid-phase separations and mass spectrometry is demonstrated through the on-line coupling of electrospray ionization mass spectrometry (ESI-MS) and off-line coupling with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF-MS). LC/ESI-MS yields real-time results while maintaining the separation obtained from the LC analysis. CE/MALDI TOF-MS offers high-mass detection and extremely low detection limits. The unique separation selectivity of CE relative to reversed-phase HPLC separations of the members of a glycopeptide family was used to develop an integrated multidimensional analysis achieved by the off-line coupling of LC, CE, and MALDI TOF-MS. To demonstrate the applicability of these techniques to the characterization of the heterogeneity of posttranslational modifications present in glycoproteins, we will report on the study of the glycoforms present in a N-linked site in a single-chain plasminogen activator (DSPAα1).  相似文献   

8.
Electrospray ionization mass spectrometry (ESI-MS) was applied for the characterization of inorganic polyphosphates [orthophosphate, pyrophosphate, tripolyphosphate, trimetaphosphate, and tetrapolyphosphatel. The high selectivity of ESI-MS allows the detection of different polyphosphate species without preseparation by ion chromatography or capillary electrophoresis. Furthermore, ESI-MS does not require the incorporation of UV-absorbing chromophores into the analytical method for the detection of phosphates, unlike conventional UV-chromatographic methods. Limits of detection by ESI-MS were estimated to range from approximately 1 to 10 ng/mL. The quantification of polyphosphate samples as single-component and multicomponent mixtures was investigated. Linear signal response for single-component samples ranged from the limit of detection to approximately 10 microg/mL Quantification of polyphosphate in streamwater is demonstrated using the standard addition method. The effect of multi-polyphosphate components and salts on signal response was also studied. For concentrations less than 2.0 microg/mL, signal response from a tetrapolyphosphate sample was comparable to those obtained from tetrapolyphosphate-tripolyphosphate mixtures. Signal response obtained from tetrapolyphosphate in the presence of tripolyphosphate or NH4NO3 at higher concentrations (approximately 50 microg/mL and 35 microg/mL, respectively) was significantly lower relative to single-component standards (approximately 40%-70%).  相似文献   

9.
The potential of ion-pair reversed-phase high-performance liquid chromatography on-line hyphenated to electrospray ionization time-of-flight mass spectrometry for the characterization of polymerase chain reaction (PCR) amplified nucleic acids was evaluated. For that purpose, a "SNP toolbox" was constructed by cloning and PCR-mediated site-directed in vitro mutagenesis at nucleotide position (ntp) 16,519 of a sequence-verified fragment of the human mitochondrial genome (ntps 15,900-599). Confirmatory sequencing demonstrated that within the sequences of the clones one and the same base was mutated to all other bases. Using these clones or equimolar mixtures of these clones as PCR templates, 51-401-bp-long amplicons were generated, which were used to determine the upper size limits of PCR products for the unequivocal detection of sequence variations in homo- and heterozygous samples. Based on the high mass spectrometric performance of the applied time-of-flight mass spectrometer, the unequivocal genotyping of all kinds of single base exchanges in PCR amplicons from heterozygous samples with lengths up to 254 base pairs (bp) was demonstrated. Considering homozygous samples, the successful genotyping of single base substitutions in up to 401-bp-long PCR products was possible. Consequently, the described hyphenated technique represents one of the most powerful mass spectrometric genotyping assays available today.  相似文献   

10.
Huber CG  Berti GN 《Analytical chemistry》1996,68(17):2959-2965
Temperature-dependent denaturation of DNA restriction fragments from the pBR322 plasmid ranging in length from 46 to 910 base pairs was detected by ion-pair reversed-phase high-performance liquid chromatography using columns packed with alkylated nonporous poly(styrene/divinylbenzene) particles. The presence of acetonitrile in the mobile phase was found to decrease the melting temperatures of DNA fragments by 1.5-2 °C/% of acetonitrile in the eluent. Small fragments (<120 bp) were completely denatured between 53.6 and 63.5 °C, depending on their total GC content. Whereas retention times of completely helical DNA fragments increased gradually with increasing temperature, partial denaturation of larger DNA fragments (>150 bp) was found to reduce retention at temperatures above 53.6 °C. Therefore, micropreparative fractionation and rechromatography, together with DNA restriction analysis, were applied to identify the correct elution order of completely helical and partially denatured fragments. Inspection of the DNA sequences of partially denatured fragments revealed domains with repeating AT base pairs. Positions of partial denaturation within the pBR322 plasmid detected by chromatographic analysis were in good agreement with partial denaturation maps obtained by electron microscopy desrcibed in the literature.  相似文献   

11.
Liang Z  Duan J  Zhang L  Zhang W  Zhang Y  Yan C 《Analytical chemistry》2004,76(23):6935-6940
Pressurized capillary electrochromatography (pCEC) was coupled with electrospray ionization mass spectrometry (ESI-MS) using a coaxial sheath liquid interface. It was used for separation and analysis of peptides and proteins. The effects of organic modifier and applied voltage on separation were investigated, and the effects of pH value of the mobile phase and the concentration of the electrolyte on ESI-MS signal were investigated. The resolution and detection sensitivity with different separation methods (pCEC, capillary high-performance liquid chromatography) coupled on-line with mass spectrometry were compared for the separation of a peptide mixture. To evaluate the feasibility and reliability of the experimental setup of the system, tryptic digests of cytochrome c and modified protein as real samples were analyzed by using pCEC-ESI-MS.  相似文献   

12.
Anion-exchange chromatography was utilized for speciation of arsenite (As(III)), arsenate (As(V)), dimethylarsinic acid (DMA(V)), monomethylarsonic acid (MMA(V)), monomethylarsonous acid (MMA(III)), and the new As species monomethylthioarsonic acid (MMTA), using inductively coupled plasma mass spectrometric (ICPMS) detection. MMA(III) and MMTA were identified for the first time in freeze-dried carrot samples that were collected over 25 years ago as part of a joint U.S. EPA, U.S. FDA, and USDA study on trace elements in agricultural crops. The discovery of MMA(III) and MMTA in terrestrial foods necessitated the analytical characterization of synthetic standards of both species, which were used for standard addition in carrot extracts. The negative ion mode, high-resolution electrospray mass spectrometry (HR-ESI-MS) data produced molecular ions of m/z 122.9418 and 154.9152 for MMA(III) and MMTA, respectively. However, ESI-MS was not sensitive enough to directly identify MMA(III) and MMTA in the carrot extracts. Therefore, to further substantiate the identification of MMA(III) and MMTA, two additional separations using an Ion-120 column were developed using the more sensitive ICPMS detection. The first separation used 20 mM tetramethylammonium hydroxide at pH 12.2 with MMA(III) eluting in less than 7 min. In the second separation, MMTA eluted at 11.2 min by utilizing 40 mM ammonium carbonate at pH 9.0. Oxidation of MMA(III) and MMTA to MMA(V) with hydrogen peroxide was observed for standards and carrot extracts alike. Several samples of carrots collected from local markets in 2006 were also analyzed and found to contain low levels of inorganic arsenic species.  相似文献   

13.
Bloodstream infections are an important cause of serious morbidity and mortality. Rapid detection and identification of specific pathogens from blood or other clinical specimens could improve the rational use of antimicrobial therapy in clinical medicine and have a great impact on the outcome of patients with systemic infections. Polymerase chain reaction using generic primers was used to amplify genomic DNA of different bacterial strains. The identification was accomplished by measuring the molecular masses of the PCR products using ion-pair reversed-phase high-performance liquid chromatography hyphenated to electrospray ionization mass spectrometry. DNA from 10 bacterial species was amplified by PCR, and the resulting amplification products were analyzed. In all cases, the measured molecular masses of the PCR products matched the theoretical value for the species-specific DNA sequence. However, three pairs of bacteria could not be distinguished since the theoretical difference in amplicon molecular mass was < 1.0 Da (different sequence, same base composition of amplicon). Determination of intra- and interday mass reproducibility resulted in relative standard deviations of 0.0030 and 0.018%, respectively. The limit of detection of the presented method was shown to be 0.5 genome equivalents/PCR. The specificity of the method in a human background was successfully tested by amplifying and analyzing 1000-10000 genome equivalents of Staphylococcus aureus spiked into human plasma.  相似文献   

14.
A tapered capillary tip containing a beveled edge was developed for use in sheathless capillary electrophoresis/electrospray mass spectrometry (CE/ESI-MS). The optimal flow rate of a 75-microm-i.d., 90-microm-o.d. beveled tapered capillary tip was similar to a conventional flat tapered tip with a 25-microm orifice. Using a mixture of coptisine, berberine, and palmatine chloride, the sheathless CE/ ESI-MS sensitivity of a beveled 75 microm tapered tip capillary was found to be similar to a 25 microm flat tip. Although both tips offer similar CE/ESI-MS sensitivity, the beveled tapered capillary tip is more rugged and durable than a conventional 25-microm tapered capillary because of the larger outside diameter and inside diameter. To make electrical contact, the capillary tip was smeared with paint marker followed by the application of a carbon coating using a graphite pencil. Using this refined carbon-coating procedure, the capillary tip can be operated with aprotic solvents.  相似文献   

15.
The technique of automated in-tube solid-phase microextraction (SPME) coupled with liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) was evaluated for the determination of beta-blockers in urine and serum samples. In-tube SPME is an extraction technique for organic compounds in aqueous samples, in which analytes are extracted from the sample directly into an open tubular capillary by repeated draw/eject cycles of sample solution. LC/MS analyses of beta-blockers were initially performed by liquid injection onto a LC column. Nine beta-blockers tested in this study gave very simple ESI mass spectra, and strong signals corresponding to [M + H]+ were observed for all beta-blockers. The beta-blockers were separated with a Hypersil BDS C18 column using acetonitrile/methanol/water/acetic acid (15:15:70:1) as a mobile phase. To optimize the extraction of beta-blockers, several in-tube SPME parameters were examined. The optimum extraction conditions were 15 draw/eject cycles of 30 microL of sample in 100 mM Tris-HCl (pH 8.5) at a flow rate of 100 microL/min using an Omegawax 250 capillary (Supelco, Bellefonte, PA). The beta-blockers extracted by the capillary were easily desorbed by mobile-phase flow, and carryover of beta-blockers was not observed. Using in-tube SPME/LC/ESI-MS with selected ion monitoring, the calibration curves of beta-blockers were linear in the range from 2 to 100 ng/mL with correlation coefficients above 0.9982 (n = 18) and detection limits (S/N = 3) of 0.1-1.2 ng/mL. This method was successfully applied to the analysis of biological samples without interference peaks. The recoveries of beta-blockers spiked into human urine and serum samples were above 84 and 71%, respectively. A serum sample from a patient administrated propranolol was analyzed using this method and both propranolol and its metabolites were detected.  相似文献   

16.
Endogenous peptides from brain extracellular fluid of live rats were analyzed using capillary liquid chromatography (LC)-tandem mass spectrometry (MS2). A 4-mm-long microdialysis probe perfused at 0.6 microL/min implanted into the striatum of anesthetized male rats was used to collect 3.6 microL dialysate fractions that were injected on-line into the capillary LC-MS2 system for analysis. A total of 3349 MS2 spectra were collected from 13 different animals under basal conditions and during localized depolarization evoked by infusion of a high-K+ solution through the microdialysis probe. Subtractive analysis revealed a total of 859 MS2 spectra that were observed only during depolarization. From these spectra, 29 peptide sequences (25 were peptides not previously observed) from 6 different protein precursors were identified using database searching software. Proteins identified include precursors to neuropeptides, synaptic proteins, blood proteins, and transporters. The identified peptides represent candidates for neurotransmitters, neuromodulators, and markers of synaptic activity or brain tissue damage. A screen for neuroactivity of novel proenkephalin fragments that were found was performed by infusing the peptides into the brain while monitoring amino acid neurotransmitters by microdialysis sampling combined with capillary electrophoresis. Three of the six tested peptides evoked significant increases in various neuroactive amino acids. These results demonstrate that this combination of methods can identify novel neurotransmitter candidates and screen for potential neuroactivity.  相似文献   

17.
Measurement of the proliferation of lymphocytes and other high-turnover cell populations in vivo can be accomplished through the incorporation of an isotopically labeled DNA precursor into actively dividing cells and the subsequent determination of the isotope enrichment in the isolated genomic DNA from selected cell populations. Two published gas chromatography/mass spectrometry (GC/MS) methods were successfully modified by our laboratory whereby a postinjection methylation reaction, rather than silylation or acetylation, was used to form a volatile derivative of deoxyadenosine (dA). We also developed a second robust microcapillary liquid chromatography-electrospray ionization (microLC-ESI)/MS method that is faster and more sensitive than the GC/MS method and does not require sample derivatization. Following administration of [6,6-(2)H(2)]-glucose to human immunodeficiency virus-infected patients, peripheral blood was drawn; cells were obtained by lymphapheresis and fractionated. DNA was isolated from the desired cell subtypes and enzymatically hydrolyzed to the free deoxyribonucleosides. The digest was analyzed using both capillary GC/MS and microLC/ESI-MS to measure the levels of the dA and [(2)H(2)]-dA or their reaction products. Sample enrichments were calculated by comparison to standard curves prepared from dA and [(2)H(2)]-dA. The microLC/ESI-MS method required fewer cells, less sample preparation, shorter analysis times, and a single calibration curve. Overall, the microLC/ESI-MS method is superior to the GC/MS method in terms of precision and accuracy, while providing a 4-fold increase in sensitivity (from 20 pmol at 0.2% [(2)H(2)]-dA enrichment to 5 pmol at 0.1% [(2)H(2)]-dA enrichment).  相似文献   

18.
The use of tetrahydrofuran/decanol as porogens for the fabrication of micropellicular poly(styrene/divinylbenzene) monoliths enabled the rapid and highly efficient separation of peptides and proteins by reversed-phase high-performance liquid chromatography (RP-HPLC). In contrast to conventional, granular, porous stationary phases, in which the loading capacity is a function of molecular mass, the loadability of the monoliths both for small peptides and large proteins was within the 0.40.9-pmol range for a 60- x 0.2-mm capillary column. Lower limits of detection obtained by measuring UV-absorbance at 214 nm with a 3-nl capillary detection cell were 500 amol for an octapeptide and 200 amol for ribonuclease A. Upon reduction of the concentration of trifluoroacetic acid in the eluent from the commonly used 0.1-0.2 to 0.05%, the separation system was successfully coupled to electrospray ionization mass spectrometry (ESI-MS) at the cost of only a small decrease in separation efficiency. Detection limits for proteins with ESI-MS were in the lower femtomole range. High-quality mass spectra were extracted from the reconstructed ion chromatograms, from which the masses of both peptides and proteins were deduced at a mass accuracy of 50-150 ppm. The applicability of monolithic column technology in proteomics was demonstrated by the mass fingerprinting of tryptic peptides of bovine catalase and human transferrin and by the analysis of membrane proteins related to the photosystem II antenna complex of higher plants.  相似文献   

19.
We describe a method, based on pressure-assisted capillary electrophoresis coupled to electrospray ionization mass spectrometry (PACE/ESI-MS), that allows the simultaneous and quantitative analysis of multivalent anions, such as citrate isomers, nucleotides, nicotinamide-adenine dinucleotides, and flavin adenine dinucleotide, and coenzyme A (CoA) compounds. Key to the analysis was using a noncharged polymer, poly(dimethylsiloxane), coated to the inner surface of the capillary to prevent anionic species from adsorbing onto the capillary wall. It was also necessary to drive a constant liquid flow toward the MS by applying air pressure to the inlet capillary during electrophoresis to maintain a conductive liquid junction between the capillary and the electrospray needle. Although theoretical plates were inferior to those obtained by CE/ESI-MS using a cationic polymer-coated capillary, the PACE/ESI-MS method improved reproducibility and sensitivity of these anions. Eighteen anions were separated by PACE and selectively detected by a quadrupole mass spectrometer with a sheath-flow electrospray ionization interface. The relative standard deviations (n = 6) of the method were better than 0.6% for migration times and between 1.4% and 6.2% for peak areas. The detection limits for these species were between 0.4 and 3.7 micromol/L with pressure injection of 50 mbar for 30 s (30 nL), that is, mass detection limits calculated in the range from 12 to 110 fmol at a signal-to-noise ratio of 3. The utility of the method was demonstrated by analysis of citrate isomers, nucleotides, dinucleotides, and CoA compounds extracted from Bacillus subtilis cells.  相似文献   

20.
We present a rapid and informative mitochondrial DNA profiling system, which has high forensic impact. The assay is based on the analysis of a 23-plex PCR by ion-pair reversed-phase high-performance liquid chromatography online hyphenated to electrospray ionization time-of-flight mass spectrometry (ICEMS). In a single 25-min run, an overall number of 627 nucleotide positions were screened. The vast majority of observed sequence variations were explainable by alterations of the allelic states of the 23 target SNPs, which were selected on their ability to increase forensic discrimination within West Eurasian populations. Within an Austrian population sample comprising 90 unrelated men, 14 different, nontarget SNP-related sequence variations--13 base substitutions and 1 deletion--were detected by ICEMS and confirmed by sequencing. All amplified sequences were located outside of the routinely sequenced hypervariable segments (HVS-I and HVS-II) of the noncoding control region. Accordingly, the genetic information obtained by the 23-plex PCR-ICEMS assay could be combined with HVS-I/HVS-II sequencing results to one highly discriminating mtDNA profile, which covered approximately 7.5% of the total mtDNA genome. With the 23-plex PCR-ICEMS assay, DNA mixtures were detected and the allelic ratios were accurately quantified. The observed robustness and sensitivity underlined the practical applicability of the assay in forensic science, which was proven by typing eight representative casework samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号