首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
Ce3+ and Yb3+ co-activated GdBO3 phosphors were prepared by a conventional solid-state reaction method. X-ray powder diffraction, photoluminescent spectra and decay curves were used to characterize their structural and luminescent properties. An efficient near-infrared (NIR) quantum cutting (QC) from the phosphors was observed, which involved the emission of two low-energy NIR photons (around 971 nm) from an absorbed ultra-violet (UV) photon at 358 nm via a cooperative energy transfer (CET) from Ce3+ to Yb3+ ions. The theoretical quantum efficiency was calculated and the maximum efficiency approached up to 164% before reaching the critical concentration quenching threshold. Our results demonstrated that these phosphors might find potential application in improving the efficiency of silicon based solar cells.  相似文献   

2.
Gd2O3:Ho3+,Yb3+ nanocrystals were synthesized via solvothermal method.X-ray diffraction(XRD),transmission electron microscopy(TEM),absorption and upconversion spectra were employed to characterize the synthesized nanocrystals.The results of XRD and TEM showed that obtained Gd2O3:Ho3+,Yb3+ nanocrystals were cubic in crystal structure and uniform spherical in morphology.The average crystallite size was calculated to be 7.5 nm.Green and red up-conversion emissions corresponding to(5F4,5S2)→5I8 and 5F5 → 5I8 transition were observed upon 980 nm excitation at room temperature.The results indicated that both green and red luminescence were based on the two-photon processes.Laser power and doping concentration dependence of the upconverted emissions were studied to understand the upconversion mechanisms.Excited state absorption and energy-transfer processes were discussed as the possible mechanisms for the visible emissions.  相似文献   

3.
The optical properties of Er3+-doped and Yb3+/Er3+ co-doped 12CaO·7Al2O3 (C12A7) poly-crystals, synthesized by high temperature solid state method, were investigated in detail. For Er3+-doped and Yb3+/Er3+ co-doped C12A7 poly-crystals, two main emission bands centered around 530/550 nm (green) and 660 nm (red) were observed under 980 nm diode laser excitation via an up-conversion process. The intensity of green up-conversion emission had a strong increase in Er3+ (1.0 mol.%, 1.5 mol.%, 3.0 mol.%), and the intensity ratio of red to green up-conversion emission had an increase in Yb3+ (1.0 mol.%, 2.0 mol.%, 10. 0 mol.%)/Er3+ (fixed at 1.0 mol.%). This detailed study of the up-conversion processes allowed us to identify the dominant up-conversion mechanisms in Er3+-doped and Yb3+/Er3+ co-doped C12A7 poly-crystals.  相似文献   

4.
A two colour phosphor Ba 2 Mg(BO3)2:Ce3+,Eu2+,Na+ was synthesized using solid-state reaction method.Luminescence of Ba2Mg(BO3)2:Ce3+,Eu2+,Na+ showed 416 and 618 nm emission bands attributed to Ce3+ and Eu2+ emission, respectively. Energy transfer occurred from Ce3+ to Eu2+ through a significant overlap of Eu 2+ excitation spectrum with Ce3+ emission spectrum in Ba 2 Mg(BO3)2. They also showed that under the excitation of UV radiation, bluish or yellowish white light was generated by coupling a broad blue emission band and a red emission band.By combining with green phosphor, Ba2Mg(BO3 ):Ce3+,Eu2+,Na+ phosphor showed potential application for white light-emitting diodes (LEDs).  相似文献   

5.
The phosphate glass doped with Gd3+,Tb3+ and Gd3+/Tb3+ were prepared by high temperature melting.The photo-luminescence behavior of Gd3+ and Tb3+ in phosphate glass were investigated by absorption,excitation,and emission spectroscopy.Energy transfer between Gd3+ and Tb3+ in phosphate glass was studied,and it was found that there were two energy transfer mechanisms between Gd3+ and Tb3+ in phosphate glass: one was from 4f7 level of Gd3+ to the 4f8 level of Tb3+,and the other was from 5d level of Tb3+ to 4f7 level of Gd3+.The new findings would be beneficial for the study of Tb3+-doped scintillating phosphate glass.  相似文献   

6.
The goal of this work was aimed to improve the power conversion efficiency of single crystalline silicon-based photovoltaic cells by using the solar spectral conversion principle, which employs an up-conversion phosphor to convert a low energy infrared photon to the more energetic visible photons to improve the spectral response. In this study, the surface of multicrystalline silicon solar cells was coated with an up-conversion molybdate phosphor to improve the spectral response of the solar cell in the near-infrared spectral range. The short circuit current (Isc), open circuit voltage (Voc), and conversion efficiency (η) of spectral conversion cells were measured. Preliminary experimental results revealed that the light conversion efficiency of a 1.5%-2.7% increase in Si-based cell was achieved.  相似文献   

7.
Phosphate glass samples with various Yb2O3 and Er2O3 contents were synthesized by the conventional melt quenching technique and characterized by X-ray diffraction,IR absorption spectroscopy and Raman scattering spectroscopy.The absorption,emission spectra and fluorescence decay studies were carried out both at low and room temperatures.Results showed the existence of several sites occupied by the rare earth ions in the phosphate glass.Up-conversion and cooperative fluorescence were also discussed.  相似文献   

8.
Sr2Mg Si2O7:Tb3+,Ce3+ phosphors were synthesized by solid-state reaction and placed in a muffle furnace in a reducing atmosphere at 1300 oC for 3 h. Photoluminescence properties and energy transfer were investigated. The Ce3+/Tb3+ energy transfer was thoroughly investigated by their emission/excitation spectra and photoluminescence lifetime, there was shortened lifetime of Ce3+(from 51.31 to 50.06 ns) which could support evidence of energy transfer from Ce3+ to Tb3+ in the host. The varied emitted color of Sr1.97–yMg Si2O7:0.03Tb3+,y Ce3+ phosphors could be achieved by altering the concentration of Ce3+, the chromaticity coordinates(x, y) varied from(0.225, 0.376) to(0.172, 0.231). In Sr1.96 Mg Si2O7:0.03Tb3+,0.01 Ce3+ phosphors, the results indicated that Sr2 Mg Si2O7:Tb3+,Ce3+ might be useful as tunable phosphors for ultraviolet white-light-emitting diodes.  相似文献   

9.
Tb3+ and Ce3+ co-activated LiZnPO4 phosphors with high luminescence efficiency were synthesized by a high temperature solid-state reaction at 1000 oC for 3 h. The XRD patterns, photoluminescence spectra and SEM were recorded and the effects of Tb3+ and Ce3+ concentration, sintering condition on the luminescent properties of as-synthesized phosphors were investigated. The emission spectra under ultraviolet (200-300 nm) radiation showed a dominant peak at 543 nm attributed to the 5D4→7F5 transition of Tb3+, which was greatly en-hanced by the co-doping of Ce3+, indicating that there occurred an efficient non-radiative energy transfer from Ce3+ to Tb3+. The optimal dop-ing concentrations of Tb3+ and Ce3+ were determined to be 9% and 10%, respectively.  相似文献   

10.
The strong yellow upconversion (UC) light emission was observed in Ho3+/Yb3+co-doped Gd2Mo3O9 phosphor under the excitation of 980 nm diode laser. The phosphors were synthesized by the traditional soli...  相似文献   

11.
An efficient near-infrared (NIR) downconversion (DC) by converting broadband ultraviolet (UV) into NIR was demonstrated in YVO4:Tm3+,Yb3+ phosphors. The phosphors were extensively characterized using various methods such as X-ray diffraction, photoluminescence excitation, photoluminescence spectra and decay lifetime to provide supporting evidence for DC process. Upon UV light varying from 260 to 350 nm or blue light (473 nm) excitation, an intense NIR emission of Yb3+ corresponding to transition of 2F5/2→2F7/2 peaking at 985 nm was generated. The visible emission, the NIR mission and the decay lifetime of the phosphors of various Yb3+ concentrations were investigated. Experimental results showed that the energy transfer from vanadate group to Yb3+ via Tm3+ was very efficient. Application of the broadband DC YVO4:Tm3+,Yb3+ phosphors might greatly enhance response of siliconbased solar cells.  相似文献   

12.
Under 980 nm laser excitation,red emission(5D0-7FJ(J=0,1,2)) of Eu3+ was observed in cubic Y2O3 codoped with Eu3+ and Yb3+.The dependence of the upconverted emission on doping concentration and laser power was studied.Yb3+ emission around 1000 nm(2F5/2-2F7/2) was reported upon excitation of Eu3+ ions.The decay curves of 5DJ(J=0,2) emission of Eu3+ under excitation of 266 nm pulse laser were examined to investigate the Eu3+→Yb3+ energy transfer process.Cooperative energy transfer process was discussed as the possible mechanism for the visible up-conversion luminescence of Eu3+ and near-infrared down-conversion emission of Yb3+.  相似文献   

13.
Yttrium aluminum garnet structure phosphors Lu2CaMg2Si3O12:Mn2+ were synthesized by conventional high temperature solid-state reaction in reductive atmosphere. The structure and optical properties of samples were characterized by application of powder X-ray diffraction (XRD) and photoluminescence spectroscopy. Results of X-ray diffraction (XRD) analysis showed that the phosphors mainly presented garnet structure with a few weak peaks of impurity phases. Lu2-xCaMg2Si3O12:xMn2+ (x=0.01-0.8) phosphors showed a broad emission band peaking at around 590 nm under ultraviolet (UV) light of 408 nm when Mn2+ concentration was less than 0.08 mol. With an increase in the Mn2+ concentration (above 0.08), another broad emission band peaking at 720 nm besides 590 nm was observed, which may be due to manganese ion having different valence and occupying different host lattice. The critical quenching concentrations of manganese ion in the wavelength of 590 and 720 nm were about 0.06 and 0.2 mol, respectively. With 408 nm excitation wavelength, emission color of the samples had a red shift trend as the Mn2+ concentration increased. All the results indicated that the Lu2CaMg2Si3O12:Mn2+ phosphors could be applicable to n-UV based white LEDs.  相似文献   

14.
BaMgAl10O17:Eu2+,Yb3+ was investigated as a possible quantum cutting system to enhance solar cells efficiency. Phosphors were synthesized by combustion method and composed of nanorods. Photoluminescence spectra showed that Eu in the sample was reduced to bi-valence while Yb remained trivalence. Through a cooperative energy transfer process, the obtained powders exhibited both blue emission of Eu2+ (around 450 nm) and near infrared emission of Yb3+ (around 1020 nm) under broad band excitation (250-410 nm) originating from 4f→5d transition of Eu2+. Energy transfer phenomenon between the sensitizer Eu2+ and the activator Yb3+ was investigated via the lumines-cent spectra and the decay curves of Eu2+ with different Yb3+ concentrations. Results indicated that energy transfer efficiency from Eu2+ to Yb3+ was not high. The poor efficiency can be explained by the long distance between rare earth ions.  相似文献   

15.
An efficient near-infrared (NIR) quantum cutting (QC) in Tm3+ and Yb3+ co-doped phosphate glasses was demonstrated, which involved the emission of two NIR photons from an absorbed visible photon via a cooperative energy transfer (CET) from Tm3+ to Yb3+ ions. Judd-Ofelt (J-O) theory was used to calculate the intensity parameters ( 2 , 4 , 6 ), the radiative transition rates (Ar ), and radiative transition lifetime (τ rad ) of Tm3+ . Based on Inokuti-Hirayama’s model, the energy transfer processes were studied and results indicated that the energy transfer of the electric dipole-dipole (Edd) was dominant in this system. Quantum efficiency related to Yb 3+ concentration was calculated, and the maximum QE efficiency reached 169.8%.  相似文献   

16.
Spectroscopic properties of Er3+/Yb3+-doped transparent oxyfluoride borosilicate glass ceramics containing YOF nanocrystals were systematically investigated. X-ray diffraction (XRD) confirmed the formation of YOF nanocrystals in the glassy matrix. Based on the Judd-Ofelt theory, the intensity parameters Ωi (i=2, 4, 6), spontaneous emission probability, radiative lifetime, radiative quantum efficiency and the effective emission bandwidth were investigated. The upconversion luminescence intensity of Er3+ ions in the glass ceramics increased significantly with the increasing crystallization temperature. The transition mechanisms of the green and red upconversion luminescence were ascribed to a two-photon process, and the blue upconversion luminescence was a three-photon absorption process.  相似文献   

17.
YAG: 1% (atom fraction) Yb^3+ , 0.5% (atom fraction) Er3+ transparent ceramics were fabricated by the solid state reaction method using high-purity Y2O3, Al2O3, Yb2O3, and Er2O3 powders as starting materials. The mixed powder compact was sintered at 1760 ℃ for 6 h in vacuum and annealed at 1500 ℃ for 10 h in an air atmosphere. The ceramics consisted of about 10μm grains and exhibited a pore-free structure. The optical transmittance of the ceramics at 1064 nm was nearly 80%. Upconversion emissions were investigated on the ceramics pumped by a 980 nm continuous wave diode laser, and strong green emission centered at 523 and 559 nm and red emission centered at 669 nm were observed, which originated from the radiative transitions of ^2H11/2→^4I15/2, ^4S3/2→^4I15/2, and ^4F9/2→^4I15/2 of Er^3+ ions, respectively.  相似文献   

18.
Research on Y2O3:Eu Phosphor Coated with In2O3   总被引:2,自引:1,他引:1  
Y2O3:Eu red phosphor for FED application was prepared by high temperature solid-state reaction. The In2O3 coating by precipitation method to the phosphor was applied and the analyses of XRD, Zeta potential, SEM, EDS and low voltage cathodoluminescence (CL) were conducted for investigating the coating effect. The results showed that In2O3 coating promoted the low voltage CL of the phosphor efficiently. The promotion was possibly due to the enhancement of the surface conductivity of the phosphor grains.  相似文献   

19.
Sr2Al2SiO7:Ce^3+, Tb^3+ white emitting phosphors were fabricated using the sol-gel method. X-Ray Powder Diffraction (XRD) analysis confirmed the formation of Sr2Al2SiO7:Ce^3+, Tb^3+. Scanning Electron Microscopy (SEM) observation indicated that the microstructure of the phosphor consisted of regular fine grains with an average size of about 0.5-1 μm. Luminescence properties were analyzed by measuring the photoluminescence spectra. The Ce^3+, Tb^3+-codoped Sr2Al2SiO7 phosphors showed four main emission peaks: one at 414 nm for Ce^3+ and three at 482, 543, and 588 nm for Tb^3+. The emission spectra of the samples with different doping concentrations showed that the Tb^3+ emission was dominant because of the persistent energy transfer from Ce^3+. The decay characteristic was better than that prepared by the solid-state process in the comparable condition. The codoped phosphor displayed long persistent white phosphorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号