首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The mitogen-activated protein kinase (MAPK) family is comprised of key regulatory proteins that control the cellular response to both proliferation and stress signals. In this study we investigated the factors controlling MAPK activation by H2O2 and explored the impact of altering the pathways to kinase activation on cell survival following H2O2 exposure. Potent activation (10-20-fold) of extracellular signal-regulated protein kinase (ERK2) occurred within 10 min of H2O2 treatment, whereupon rapid inactivation ensued. H2O2 activated ERK2 in several cell types and also moderately activated (3-5-fold) both c-Jun N-terminal kinase and p38/RK/CSBP. Additionally, H2O2 increased the mRNA expression of MAPK-dependent genes c-jun, c-fos, and MAPK phosphatase-1. Suramin pretreatment completely inhibited H2O2 stimulation of ERK2, highlighting a role for growth factor receptors in this activation. Further, ERK2 activation by H2O2 was blocked by pretreatment with either N-acetyl-cysteine, o-phenanthroline, or mannitol, indicating that metal-catalyzed free radical formation mediates the initiation of signal transduction by H2O2. H2O2-stimulated activation of ERK2 was abolished in PC12 cells by inducible or constitutive expression of the dominant negative Ras-N-17 allele. Interestingly, PC12/Ras-N-17 cells were more sensitive than wild-type PC12 cells to H2O2 toxicity. Moreover, NIH 3T3 cells expressing constitutively active MAPK kinase (MEK, the immediate upstream regulator of ERK) were more resistant to H2O2 toxicity, while those expressing kinase-defective MEK were more sensitive, than cells expressing wild-type MEK. Taken together, these studies provide insight into mechanisms of MAPK regulation by H2O2 and suggest that ERK plays a critical role in cell survival following oxidant injury.  相似文献   

2.
Owingtothevariationofcoordinatedmodesforcarboxylateanions ,manydifferenttypesofcrystalstructuresfortherareearthcomplexeswitharomaticacidandnitrogen containingligandswereobtained[1~ 4 ] .Theirthermaldecompositionbehaviorhadbeenre portedinpreviouspapers[5~ 8] .…  相似文献   

3.
Sm_2 Fe_(17) prepared by reduction-diffusion method needs to be washed with water to remove calcium oxide. Electrochemical corrosion occurs when Sm_2 Fe_(17) powder is in contact with liquid water. Corrosion mechanism of H_2 O on Sm_2 Fe_(17) powder and nitrogenation process of corroded Sm_2 Fe_(17) were studied by analyzing the structure and morphology. It is indicated that the metallic hydroxide forms and deposits on the Sm_2 Fe_(17) powder surfaces during water corrosion. At the same time, oxygen and hydrogen enter the unit cell of Sm2 Fe_(17), causing a slight increase in Curie temperature. In the subsequent nitriding process,the hydroxide is dehydrated and hydrogen is desorbed. The resulting oxide reacts with Sm_2 Fe_(17)N_x to form a-Fe and Sm_2 O_3. Thermodynamic calculations using the HSC Chemistry 6.0 software indicate that the reaction can occur spontaneously. The effect of water corrosion on the magnetic properties of the nitride can be eliminated by hydrogen reduction prior to nitriding.  相似文献   

4.
Recently ,therehasbeenconsiderablein terestinlanthanide(Ⅲ )hexacyanoferratesandtheanalogouscobalt(Ⅲ )aswellaschromium(Ⅲ )complexesbecauseoftheirpotentialascatalytic ,semiconductive ,andmagneticmate rials[1~ 4] .Forexample ,magneticstudiesonaseriesofthree dimensio…  相似文献   

5.
6.
[Eu2(p-MOBA)6(phen)2](H2O)2配合物热分解动力学研究   总被引:4,自引:0,他引:4  
采用TG-DTG技术研究了「Eu2(p-MOBA)6(phen)2」(H2O)2(p-MOBA代表对甲氧基苯甲酸根离子;phen表示1,10-邻啡罗啉)在静态空气中的非温热分解过程及动力学,根据TG曲线确定了热分解过程的中单产的及最终产物,动用Achar法与Coats-Redlfern法对非等温动力学数据进行分析,推断出和线步的动力学方程为da/dt=AexP(-E/RT)「-ln(1-a)」^-  相似文献   

7.
Horseradish peroxidase (HRP) catalyzes cyanide sensitive oxidation of epinephrine to adrenochrome at physiological pH in the absence of added H2O2 with concurrent consumption of O2. Both adrenochrome formation and O2 consumption are significantly inhibited by catalase, indicating a peroxidative mechanism as a major part of oxidation due to intermediate formation of H2O2. Sensitivity to superoxide dismutase (SOD) also indicates involvement of O2- in the oxidation. Although SOD-mediated H2O2 formation should continue epinephrine oxidation through a peroxidative mechanism, low catalytic turnover, on the contrary, indicates that O2- takes part in a vital reaction to form an intermediate for adrenochrome formation and O2 consumption. Generation of O2- is evidenced by ferricytochrome c reduction sensitive to SOD. On addition of H2O2, both adrenochrome formation and O2 consumption are further increased due to reaction of molecular oxygen with some intermediate oxidation product. Peroxidative oxidation proceeds by one-electron transfer generating o-semiquinone and similar free radicals which when stabilized with Zn2+ or spin-trap, alpha-phenyl-tert-butylnitrone (PBN), inhibit adrenochrome formation and O2 consumption. The free radicals thus favor reduction of O2 rather than the disproportionation reaction. Spectral studies indicate that, during epinephrine oxidation in the presence of catalase, HRP remains in the ferric state absorbing at 403 nm. This suggests that HRP catalyzes epinephrine oxidation by its oxidase activity through Fe3+/Fe2+ shuttle consuming O2, where the rate of reduction of ferric HRP with epinephrine is slower than subsequent oxidation of ferrous HRP by O2 to form compound III. Compound III was not detected spectrally because of its quick reduction to the ferric state by epinephrine or its subsequent oxidation product. In the absence of catalase, peroxidative cycles predominate when HRP still remains in the ferric state through the transient formation of compounds I and II not detectable spectrally. Among various mono- and dihydroxyl aromatic donors tested, only epinephrine shows the oxidase reaction. Binding studies indicate that epinephrine interferes with the binding of CN-, SCN-, and guaiacol indicating that HRP preferentially binds epinephrine near the heme iron close to the anion or aromatic donor binding site to catalyze electron transfer for oxidation. HRP thus initiates epinephrine oxidation by its oxidase activity generating O2- and H2O2. Once H2O2 is generated, the peroxidative cycle continues with the consumption of O2, through the intermediate formation of O2- and H2O2 which play an obligatory role in subsequent cycles of peroxidation.  相似文献   

8.
Nitric oxide (NO) in combustion flue gasses can be converted to higher oxidation states by the injection of aqueous solutions of hydrogen peroxide (H2O2) into the hot flue gases. The NO is oxidized to NO2, HNO2, and HNO3, which can then be removed in a wet scrubber. A pilot plant system that was designed, constructed, and operated at Kennedy Space Center confirmed previous results that H2O2 is very effective at oxidizing NO; conversions of NO above 90% were obtained at temperatures of about 500°C (930°F) using mole ratios of H2O2:NOx slightly above 1.0. The mole ratios of H2O2∕NOx needed to obtain high conversions of NO were significantly lower in the pilot plant that they had been in previous laboratory studies, demonstrating that this process can be an economically feasible method for NOx control. The position of the injector and the type of atomization were very important to the efficient utilization of peroxide. When SO2 was present in the flue gas, both NO and SO2 were oxidized without increasing the demand for peroxide.  相似文献   

9.
Presumptive identification of Escherichia coli O157:H7 is possible in an individual, nonmultiplexed PCR if the reaction targets the enterohemorrhagic E. coli (EHEC) eaeA gene. In this report, we describe the development and evaluation of the sensitivity and specificity of a PCR-based 5' nuclease assay for presumptively detecting E. coli O157:H7 DNA. The specificity of the eaeA-based 5' nuclease assay system was sufficient to correctly identify all E. coli O157:H7 strains evaluated, mirroring the previously described specificity of the PCR primers. The SZ-primed, eaeA-targeted 5' nuclease detection assay was capable of rapid, semiautomated, presumptive detection of E. coli O157:H7 when >/=10(3) CFU/ml was present in modified tryptic soy broth (mTSB) or modified E. coli broth and when >/=10(4) CFU/ml was present in ground beef-mTSB mixtures. Incorporating an immunomagnetic separation (IMS) step, followed by a secondary enrichment culturing step and DNA recovery with a QIAamp tissue kit (Qiagen), improved the detection threshold to >/=10(2) CFU/ml. Surprisingly, immediately after IMS, the sensitivity of culturing on sorbitol MacConkey agar containing cefeximine and tellurite (CT-SMAC) was such that identifiable colonies were demonstrated only when >/=10(4) CFU/ml was present in the sample. Several factors that might be involved in creating these false-negative CT-SMAC culture results are discussed. The SZ-primed, eaeA-targeted 5' nuclease detection system demonstrated that it can be integrated readily into standard culturing procedures and that the assay can be useful as a rapid, automatable process for the presumptive identification of E. coli O157:H7 in ground beef and potentially in other food and environmental samples.  相似文献   

10.
Exposure of human keratinocytes to physiologic doses of ultraviolet B (UVB) radiation induces phosphorylation of the epidermal growth factor receptor (EGFR). We demonstrate that H2O2 generated by UVB mediates EGFR phosphorylation. Using dihydrorhodamine 123 as a specific fluorescent dye probe, we show that UVB irradiation (50-800 J per m2) of keratinocytes leads within minutes to concentration-dependent intracellular production of H2O2. A corresponding concentration-dependent increase in the release of extracellular H2O2 was measured by using Amplex, a derivative of dihydrophenoxazine. The levels of intracellular H2O2 that are induced by UVB irradiation and that stimulate EGFR phosphorylation correlate strongly with the response induced by exogenously added H2O2. UVB or H2O2 demonstrated concentration- and time-dependent stimulation of EGFR phosphorylation that was initially observed within 1-5 min and exhibited a proportionate delay for UVB-induced production of H2O2. EGFR phosphorylation induced by UVB or H2O2 declined significantly toward baseline levels by 4 h and could be restimulated after H2O2 but not after UVB exposure. Phosphorylation of EGFR was inhibited by the structurally unrelated antioxidants butylated hydroxyanisole, N-acetyl-L-cysteine, and pyrrolidine dithiocarbamate, or by the H2O2-degrading enzyme catalase. These data indicate that generation of H2O2 by UVB radiation of human keratinocytes participates in the rapid, ligand-independent phosphorylation of EGFR and implicate H2O2 as a biologic mediator in EGFR activation and regulation of the downstream signaling cascade. UVB-induced H2O2 has the potential to initiate or modulate early EGFR-mediated signaling events that could play an important role in the cellular response to oxidative stress.  相似文献   

11.
ecausesomerareearthmetalcompoundshavethepromotiveactiontothegrowthofani malsandplants[1 ] ,andthefunctionofantiin flammation ,antibacterium ,anticoagulantionandanticaner[2 ] ,theinvestigationonthesyn thesesandstructuresoftheeverykindsofrareearthmetalcompounds…  相似文献   

12.
选择性催化还原(SCR)具有效率高、技术成熟的优势,但处理球团烟气需要加热才能达到SCR脱硝的反应温度,导致能耗和运行成本高.氧化球团预热Ⅱ段(PH段)烟气温度在300℃以上,满足SCR反应所需温度,但是烟气中含有的SO2和H2O(g),会对催化剂的脱硝性能产生影响.研究了 PH段烟气中SO2和H2O(g)对V/Ti催...  相似文献   

13.
14.
15.
Increased production of reactive oxygen metabolites (ROM) can contribute to the initiation phase of nephrotoxic and ischemic acute renal failure (ARF). However, whether altered ROM expression also exists during the maintenance phase of ARF has not been adequately assessed. Since diverse forms of tubular injury can initiate a "cytoresistant state," this study tested whether a down-regulation of ROM expression might develop in the aftermath of acute tubular damage, potentially limiting renal susceptibility to further attack. To test this hypothesis, rats were subjected to either mild myohemoglobinuria (glycerol injection) or bilateral ureteral obstruction and 24 hours later, cytoresistant proximal tubular segments (PTS) were isolated to assess ROM expression. PTS from sham operated rats were used to establish normal values. Both sets of cytoresistant PTS manifested approximately 75% reductions in H2O2 levels, as assessed by the phenol red/horseradish peroxidase technique (P < 0.01 to 0.001). A 40% reduction in hydroxyl radical (.OH) levels was also observed (salicylate trap method), thereby substantiating decreased oxidant stress in cytoresistant PTS. Catalase, glutathione peroxidase, and free iron levels were comparable in control and cytoresistant PTS, suggesting that decreased H2O2 production (such as by mitochondria) was the cause of the decreased oxidant stress. To test this latter hypothesis, H2O2 expression by control and cytoresistant PTS was assessed in the presence of respiratory chain inhibitors. Although site 1 and site 3 inhibition markedly suppressed H2O2 production in control PTS, they had no impact on H2O2 production in cytoresistant PTS, implying that production at these sites was already maximally suppressed. Correlates of the decreased mitochondrial H2O2 production were improvements in cell energetics (increased ATP/ADP ratios with Na ionophore treatment) and approximately 40 to 90% increases in PTS/renal cortical glutathione content. We conclude that: (1) proximal tubule H2O2/.OH expression can be downregulated during the maintenance phase of ARF; (2) this seemingly reflects a decrease in mitochondrial ROM generation; and (3) the associated improvements in glutathione content and/or cellular energetics could conceivably contribute to a post-injury cytoresistant state.  相似文献   

16.
The objective of this study was to compare effects of quin2 and EDTA in iron-driven Fenton-type reactions. Seven different assays for detection of strong oxidants were used: the DMSO, deoxyribose, benzoate hydroxylation, and plasmid DNA strand breakage assays, detection of 8-oxo-deoxyguanosine in deoxyguanosine mononucleosides and calf thymus DNA, and electron spin resonance with the spin-trap (4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) in the presence of ethanol or DMSO. With H2O2 and Fe3+, quin2 generally strongly increased the formation of reactive species in all assays, whereas with EDTA the results varied between the assays from barely detectable to highly significant increases compared to H2O2 and unchelated Fe3+. We found that the species produced in the reaction between Fe3+-quin2 and H2O2 behaved like the hydroxyl radical in all assays, whereas with Fe3+-EDTA no clear conclusion could be drawn about the nature of the oxidant. The effect of quin2 on the formation of oxidants on Fe2+ autoxidation, varied from generally inhibiting to slightly promoting, depending on the assay used. EDTA had a promoting effect on the amount of oxidant detected by all but one assay. None of the autoxidation systems produced DMSO or ethanol radical adducts with 4-POBN. In the presence of either chelator, H2O2, and Fe2+ DMSO and ethanol radical adducts of 4-POBN were produced. Using the Fe2+ indicator ferrozine, evidence for direct reduction of Fe3+-quin2 by H2O2 was found. Superoxide anion radical appeared to be less efficient than H2O2 as reductant of Fe3+-quin2 as addition of superoxide dismutase in the ferrozine experiments only decreased the amount of Fe2+ available for Fenton reaction by 10-20%. The main conclusions from our study are that the reduction of Fe3+-quin2 can be driven by H2O2 and that Fe2+ in the following oxidation step produces a species indistinguishable from free hydroxyl radical.  相似文献   

17.
This study reports the microperoxidase-8 (MP8)/H2O2-catalyzed dehalogenation of pentafluorophenol and pentachlorophenol, compounds whose toxic effects and persistence in the environment are well documented. The primary products of this dehalogenation reaction appear to be the corresponding tetrahalo-p-benzoquinones. Under the conditions used, the fluorinated phenol and its intermediate products are more susceptible to degradation than the corresponding chlorinated analogue and its products. The main degradation products of tetrachloro-p-benzoquinone and tetrafluoro-p-benzoquinone were identified as trichlorohydroxy-p-benzoquinone and trifluorohydroxy-p-benzoquinone, respectively. This secondary conversion of tetrafluoro-p-benzoquinone and tetrachloro-p-benzoquinone was not mediated by MP8, but was driven by H2O2. Evidence is presented for a mechanism where H2O2 molecules and not hydroxide anions are the reactive nucleophilic species attacking the tetrahalo-p-benzoquinones. In addition to the formation of the trihalohydroxy-p-benzoquinones, the formation of adducts of the tetrahalo-p-benzoquinone products with ethanol, present in the incubation medium, was observed. The adduct from the reaction of tetrachloro-p-benzoquinone with ethanol was isolated and identified as trichloroethoxyquinone. Thus, the present paper describes a system in which the formation of tetrahalo-p-benzoquinone-type products by an oxidative heme-based catalyst could be unequivocally demonstrated.  相似文献   

18.
Inflammation of the respiratory tract is associated with the production of reactive oxygen species, such as hydrogen peroxide (H2O2) and superoxide (O2-), which contribute extensively to lung injury in diseases of the respiratory tract. The mechanisms and target molecules of these oxidants are mainly unknown but may involve modifications of growth-factor receptors. We have shown that H2O2 induces epidermal growth factor (EGF)-receptor tyrosine phosphorylation in intact cells as well as in membranes of A549 lung epithelial cells. On the whole, total phosphorylation of the EGF receptor induced by H2O2 was lower than that induced by the ligand EGF. Phosphorylation was confined to tyrosine residues and was inhibited by addition of genistein, indicating that it was due to the activation of protein tyrosine kinase (PTK). Phosphoamino acid analysis revealed that although the ligand, EGF, enhanced the phosphorylation of serine, threonine, and tyrosine residues, H2O2 preferentially enhanced tyrosine phosphorylation of the EGF receptor. Serine and threonine phosphorylation did not occur, and the turnover rate of the EGF receptor was slower after H2O2 exposure. Selective H2O2-mediated phosphorylation of tyrosine residues on the EGF receptor was sufficient to activate phosphorylation of an SH2-group-bearing substrate, phospholipase C-gamma (PLC-gamma), but did not increase mitogen-activated protein (MAP) kinase activity. Moreover, H2O2 exposure decreased protein kinase C (PKC)-alpha activity by causing translocation of PKC-alpha from the membrane to the cytoplasm. These studies provide novel insights into the capacity of a reactive oxidant, such as H2O2, to modulate EGF-receptor function and its downstream signaling. The H2O2-induced increase in tyrosine phosphorylation of the EGF receptor, and the receptor's slower rate of turnover and altered downstream phosphorylation signals may represent a mechanism by which EGF-receptor signaling can be modulated during inflammatory processes, thereby affecting cell proliferation and thus having implications in wound repair or tumor formation.  相似文献   

19.
The cellular source(s) and mechanisms of generation of reactive oxygen species (ROS) in nonphagocytic cells stimulated by cytokines are unclear. In this study, we demonstrate that transforming growth factor beta 1 (TGF-beta 1, 1 ng/ml) induces the release of H2O2 from human lung fibroblasts within 8 h following exposure to this cytokine. Elevation in H2O2 release peaked at 16 h (approximately 22 pmol/min/10(6) cells) and gradually declined to undetectable levels at 48 h after TGF-beta 1 treatment. NADH consumption by these cells was stimulated by TGF-beta 1 while that of NADPH remained unchanged. NADPH oxidase activity as measured by diphenyliodonium (DPI)-inhibitable NADH consumption in TGF-beta 1-treated cells followed a time course similar to that of H2O2 release. DPI, an inhibitor of the NADPH oxidase complex of neutrophils and other flavoproteins, also inhibited the TGF-beta 1-induced H2O2 production. Inhibitors of other enzymatic systems involving flavoproteins that may be responsible for the production of H2O2 in these cells, including xanthine oxidase, nitric oxide synthase, and both mitochondrial and microsomal electron transport systems, failed to inhibit TGF-beta 1-induced NADH oxidation and H2O2 production. The delay (> 4 h) following TGF-beta 1 exposure along with the inhibition of this process by cycloheximide and actinomycin D suggest the requirement of new protein synthesis for induction of NADH oxidase activity in TGF-beta 1-stimulated fibroblasts.  相似文献   

20.
CeO2 ispresentinthemajorityoftheformulationsofthethree waycatalystsduetoitswell knownmulti pleeffectssuchas :(1)stabilizationofthepreciousmetalsdispersionandthealuminasupport[1] ,(2 )pro motionofwatergasshiftreactionandsteamreformingreaction[2 ] andsoon .TheprimaryfunctionofCeO2 intheTWCsistoprovideoxygenstoragecapacity(OSC) ,actingasanefficient“oxygenbuffer”toun dergoeffectivereduction/oxidationcyclesbyshiftingbetweenCeO2 underoxidizingconditions (oxygenstor age)andCe2 O3underreducingco…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号