首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electron-beam technology was applied to reduce the emission of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) in a flue gas of 1000 m(3)N/h from the municipal solid waste incinerator (MSWI) at a temperature of 200 degrees C. More than 90% decomposition of PCDD/Fs was obtained using an electron accelerator at a dose of 14 kGy. The decomposition was initiated through reactions with OH radicals produced by the irradiation of flue gases, followed by oxidation such as the ring cleavage of the aromatic ring, the dissociation of ether bond, and dechlorination. The cost analysis estimated that the electron-beam system can cut the annualized cost by approximately 50% for the treatment of PCDD/Fs in a pre-dusted MSWI flue gas as compared with a bag-filter system when operating on electricity generated from an incineration. Electron-beam technology is an economically and technologically useful method for reducing PCDD/Fs in an incineration flue gas.  相似文献   

2.
The role of chlorination reactions in the formation of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in a municipal waste incinerator was assessed by comparing predicted chlorination isomer patterns with incinerator flue gas measurements. Complete distributions of PCDD and PCDF congeners were obtained from a stoker-type municipal waste incinerator operated under 13 test conditions. Samples were collected from the flue gas prior to the gas cleaning system. While total PCDD/F yields varied by a factor of 5 to 6, the distributions of congeners were similar. A conditional probability model, dependent only on the observed distribution of monochlorinated isomers, was developed to predictthe distributions of polychlorinated isomers formed by chlorination of dibenzo-p-dioxin (DD) and dibenzofuran (DF). Agreement between predicted and measured PCDF isomer distributions was high for all homologues, supporting the hypothesis that DF chlorination can play an important role in the formation of PCDF byproducts. The PCDD isomer distributions, on the other hand, did not agree well with model predictions, suggesting that DD chlorination was not a dominant PCDD formation mechanism at this incinerator. This work demonstrates the use of PCDD/F isomer patterns for testing formation mechanism hypotheses, and the findings are consistent with those from other municipal waste combustion studies.  相似文献   

3.
Activated carbon injection (ACI) is commonly used to control PCDD/F (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans) emissions from stationary sources. In this study, the characteristics of PCDD/Fs emitted from one municipal waste incinerator (MWI) and two industrial waste incinerators (IWI-1 and IWI-2) that apply activated carbon systems for controlling the emissions are investigated via intensive stack sampling. MWI and IWI-1 are equipped with ACI and bag filters (BF) while IWI-2 is equipped with a fixed activated carbon bed (FCB). Results indicate that most PCDD/Fs in flue gas downstream of ACI+BF exist in vapor phase (over 90%) while most PCDD/ Fs exist in solid phase (over 60%) downstream of FCB. For MWI and IWI-1, the removal efficiencies of vapor and solid-phase PCDD/Fs are 98.5-99.6% and 99.8-99.9%, respectively. In addition,the removal efficiencies of vapor- and solid-phase PCDD/Fs are 84.5% and -13.4% in IWI-2, respectively. The results also indicate that the partition of vapor/solid-phase PCDD/F is affected by the type of the air pollutant control devices (APCDs) applied upstream and the particulate matter concentration in flue gas. On the basis of the sampling results of waste incinerators, this study preliminarily establishes the equations for predicting vapor/solid-phase PCDD/F partition in flue gases downstream of various APCDs including cyclone (CY), electrostatic precipitator (EP), FCB, ACI+BF, and selective catalytic reduction system (SCR).  相似文献   

4.
The presence of chlorinated and brominated compounds in electronic waste (EW) results in the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) during the EW dismantling process. In this study, we investigated the dioxins present in ambient air around the EW dismantling area Guiyu in Guangdong, China. Atmospheric PCDD/F (tetra to octa) abundances and toxic equivalent (TEQ) values were 64.9-2365 pg/m3 and 0.909-48.9 pg of W-TEQ/m3, respectively; these are the highest documented values of these compounds found in ambient air in the world. PBDD/Fs (eight 2,3,7,8-substituted congeners) were also found at high pollution levels (concentrations of 8.124-61 pg/m3 and 1.6-2104 pg of I-TEQ/m3). Profiles of the 2,3,7,8-PCDD/F homologues in the air of Guiyu differed from typical urban air patterns reported in the literature, and the concentration of homologues increased with the chlorination degree of 2,3,7,8-PCDD/Fs except for OCDF. The severe dioxin pollution present in Guiyu substantially influences the adjacent area of Chendian, where atmospheric PCDD/F and 2,3,7,8-PBDD/F levels are higher than those of common urban areas in the world. Our tentative inhalation risk assessment showed that residents in Guiyu are at a high risk of exposure to dioxins. The total PCDD/F intake doses far exceed the WHO 1998 tolerable daily intake limit of 1-4 pg of W-TEQ kg(-1) day(-1).  相似文献   

5.
Nonstationary combustion conditions at municipal solid waste incineration (MSWI) plants cause increased crude gas concentrations of polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF), and other products of incomplete combustion (PIC). Such transient conditions occur, e.g., during and after start-up processes in MSWI plants. The start-up and shut-down processes of a MSWI plant were investigated in detail. PCDD/F and other PIC concentrations were determined in the crude gas, in the boiler ash, and in the ash from the electrostatic precipitator (ESP ash), with the outcome that only the start-up procedure significantly affected the concentrations of the organic pollutants in the flue gas and in the ESP ash. The shut-down procedure was evaluated as less problematic for the concentration of the organic pollutants. Moreover the concentration of the PCDD/F and other PIC in the boiler ash was determined as not influenced by shut-down and start-up processes. The homologue profiles and the congener patterns as well as the PCDF/PCDD ratio in the flue gas and in the ESP ash change during MSWI start-up. The changing patterns point at a transition from dominant de novo synthesis to precursor synthesis.  相似文献   

6.
Cadmium is a toxic metal that causes environmental concern in connection with utilization and land filling of ash from combustion of municipal solid waste (MSW). Collecting information about the chemical associations of Cd in ash is fundamental since this affects its solubility and leachability from the ash material. In the work presented here, the content, distribution, and chemical forms of toxic metals especially of Cd on/in individual Municipal Solid Waste (MSW) fly ash particles have been investigated in situ by synchrotron radiation induced mu-X-ray fluorescence and absorption spectrometry. The use of an excitation energy of 27 keV made it possible to detect trace metals, such as Cd, present at ppm levels routinely. Changing the excitation energy in the vicinity of the absorption edge of Cd (26.71 keV), the absorption spectra of this element were measured for the first time in this high energy range in micron-sized spots of individual fly ash particles. The measurements indicated Cd to be preferably concentrated in some small areas ("hot-spots") with high concentration (up to 200 ppm) rather than in a homogeneous distribution or as a thin coating on the whole particle surface, making the surface-reaction the most probable mechanism of Cd enrichment during MSW combustion processes. Comparisons of XAS spectra of fly ashes and reference compounds showed that in the particles studied Cd is present in the oxidation state +2. Analyses of linear combinations of standard spectra allowed estimating the Cd presence within fly ash particles as an admixture of primarily CdSO4, CdO, and CdCl2 as well as an unidentified compound not included as a standard.  相似文献   

7.
8.
Municipal solid waste incineration (MSWI) fly ash has recently attracted much attention because of its large quantity and enrichment of high toxic combustion generating organohalogen contaminants such as polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), coplanar polychlorinated biphenyls (coplanar PCBs), and polychlorinated biphenyls (PCBs). Since the organohalogen contaminants in MSWI fly ash are known to be enriched in the unburnt carbon (UC) fraction, the organohalogen contaminants can therefore be removed by the removal of UC. In this research, we used a modified column flotation technique to remove the organic contaminants from MSWI fly ash. UC was removed for 27.7% under the flotation condition without chemical flotation aids. The removal efficiencies of UC, PCDD/Fs, coplanar PCBs, and PCBs are further improved by adding flotation aids during the flotation process. UC was removed for 49.0% by adding a collector assistant with a HLB value of 13.5 and a concentration in the kerosene of 3% during the flotation process. In addition,the UC removal efficiencies are increased with the decrease of the diameter of the micropores in the gas spargers. By optimizing the flotation condition, 41.9% total PCDD/Fs, 40.8% coplanar PCBs, and 44.1% PCBs with 64.0% UC have been successfully removed from MSWI fly ash. The total toxic equivalent (TEQ) of the fly ash was decreased from 6.2 ng/g to 4.2 ng/g in the residue.  相似文献   

9.
Study of the inorganic chlorides in municipal solid waste (MSW) shows that the main source of inorganic chlorides in MSW is food. The main organic source of HCl emission from MSW is plastic. But wood, textiles, and food also produce a large amount of HCl when they are combusted. Each combustible shows a different HCl releasing temperature range. At 973 K, there are 30-70% of the total chlorine left in the char of each combustibles in MSW.  相似文献   

10.
Isomer patterns of polychlorinated naphthalenes (PCNs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated biphenyls (PCBs), and polychlorinated dibenzofurans (PCDFs) from municipal waste incinerators (MWIs) were predicted by a model based on symmetry numbers and preferential chlorination positions. Fly ash isomer patterns from five stoker and seven fluidized bed incinerators were compared to validate the prediction model. The isomer patterns of the highly chlorinated PCN homologues from stoker type incinerators were successfully predicted. The relative equilibrium concentrations of tetrachloronaphthalenes (TeCNs), calculated by an ab initio method, cannot explain the field isomer patterns. Formation pathways involving chlorophenol precursor condensation reactions should be examined to see whether these isomer patterns provide a better fit to the field PCDD data. The PCB isomer patterns were fit reasonably well, but this finding could merely be an artifact of the limited data and the large number of isomers. The prediction equations of PCDFs, revised from prior work to include a symmetry number for each isomer, represented the field data patterns for the higher chlorinated isomers very well. Successful prediction of isomer patterns for partial homologue ranges suggests that these patterns are determined by a mechanism governed by Cl-position-specific preferences.  相似文献   

11.
Many integrated solid waste management (ISWM) models are available but are of little use to developing countries such as India since they do not take into account typical developing countries municipal solid waste characteristics such as high organic content, poor performance of formal sector control and support, high activity of scavengers and waste pickers, etc. The goal of this study is to create a computer program to determine the least cost treatment and disposal system for a given solid waste management problem. To demonstrate its applicability, the model was applied to the Indian city Amritsar. A typical Indian city like Amritsar generates about 500 ton of MSW/d with 45% moisture content, 30% volatile matter, and calorific value of 1500 kcal/kg. The computer model was run for various technologies. Results showthatfor Amritsar city incineration an expenditure of U.S. dollars (USD) 6.62 is incurred, whereas landfilling, composting, and biomethanation digester give an income of USD 0.13, USD 0.20, and USD 0.23 per ton of MSW, respectively. This empirical exercise not only reveals the model's strengths such as highlighting important interdependencies in the waste management sector but also its requirement for quality data.  相似文献   

12.
The Waelz process is a classic method used for recovering zinc from electric arc furnace (EAF) dusts containing relatively high concentrations of PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans) as well as volatile metals, such as Zn, Pb, and Cu, and chlorine. As a result of the operating temperature in the cooling process and high carbon and chlorine contents, significant PCDD/Fs are formed in the typical Waelz process, causing public concerns regarding PCDD/F emissions. In this study, flue gas and ash samplings are simultaneously conducted at different sampling points to evaluate the removal efficiency and the partitioning of PCDD/Fs between the vapor and solid phases in the Waelz plant investigated. With the environment (temperature window, sufficient retention time, chlorine, and catalysts available) conducive to PCDD/F formation in the dust settling chamber (DSC), a significantly high PCDD/F concentration (1223 ng TEQ/Nm3) is measured in flue gas downstream from the DSC of the Waelz plant investigated. In addition, the cyclone and bag filter adopted in this facility can only remove 51.3% and 69.4%, respectively, of the PCDD/Fs in the flue gas, resulting in a high PCDD/F concentration (145 ng TEQ/Nm3) measured in the stack gas of the Waelz plant investigated. On the basis of treating 1 ton of EAF dust, the total PCDD/F discharge (stack gas emission + ash discharge) is 840 ng TEQ/kg EAF dust of the Waelz plant investigated. Because of the lack of effective air pollutant control devices for PCDD/Fs, about 560 ng TEQ/kg EAF dust are discharged via stack gas in this facility.  相似文献   

13.
14.
15.
Co-combustion of coal and waste in power plants poses both environmental and economic challenges, especially because of the high polychlorinated dibenzo-p-dioxin and furan (PCDD/F) emissions from solid waste. In this study, we performed a series of experiments focusing on the prevention of PCDD/F formation by the use of various inhibitors added to the fuel before combustion. A mixture of lignite coal, solid waste, and poly(vinyl chloride) (PVC) was thermally treated in a laboratory-scale furnace at 400 degrees C. Twenty different additives were investigated at a level of 10 wt% of the total fuel during the experiments. We have divided them into four general groups according to their chemical nature: metal oxides, N-containing compounds, S-containing compounds, and N- and S-containing compounds. The resulting values showed a significant reduction of PCDD/F levels when N- and S-containing compounds were used as additives to the fuel. Principle component analysis (PCA) was used to illustrate the effect of the 20 different inhibitors on the congener patterns emitted. As a result, the most effective inhibitors for PCDD/F formation in flue gases were determined to be (NH4)2SO4 and (NH4)2S2O3; they are inexpensive and nontoxic materials. Both compounds can suppress the formation of toxic compounds such as PCDD/Fs by more than 98-99%, and the most toxic PCDD/F congeners were not detectable in most of the samples. Thus, these compounds were also studied as a lower percentage of the fuel. (NH4)2SO4 resulted in a greater than 90% reduction of PCDD/F even when composing only 3% of the fuel combusted. However, less than 5% (NH4)2S2O3 resulted in far weaker inhibition. The PCDD/F homologue distribution ratio for samples with varying percentages of (NH4)2SO4 and (NH4)2S2O3 was also investigated. Higher percentages of the inhibitors produced a lower percentage of lower chlorinated PCDDs. The opposite effect was found for PCDFs.  相似文献   

16.
The main sources of dioxin emissions are municipal solid waste incinerators. The Japanese national government has set an emission standard for dioxins to reduce dioxin exposure levels. In this study, cost-effectiveness analyses are carried out regarding countermeasures that were recently taken and are being taken at municipal solid waste incinerators in Japan. Annual costs were estimated by telephone survey and model calculations. Annual decrease in the incidence of cancer was estimated in three steps. First, the annual decrease in the volume of dioxin emissions was estimated. Next, using a mathematical model, the annual decrease in human exposure was estimated. Finally, the annual decrease in the incidence of cancer was estimated by applying the cancer slope factor. When annual costs are divided by the annual number of life-years saved, cost per life-year saved (CPLYS) was obtained. CPLYS was estimated to be 7.9 million yen for emergency countermeasures and 150 million yen for long-term countermeasures. However, it must be noted that these obtained CPLYSs are highly dependent on the cancer slope factor and should be considered as an upper limit since there may be a cancer effect threshold.  相似文献   

17.
Mercury in municipal solid waste in China and its control: a review   总被引:5,自引:0,他引:5  
Although a potentially significant and preventable source of environmental pollution, mercury in municipal solid waste (MSW) has not received adequate attention in China. Discarded mercury-containing products, if not recycled, ultimately release mercury to air, soil, and groundwater, even after being properly collected and disposed of in MSW management facilities. This review presents an overview on mercury in MSW and describes the emissions associated with landfilling, incineration, and composting in China. Besides end-of-pipe technologies for controlling mercury emissions from MSW management, strategies for controlling mercury in MSW are also discussed, focusing on mercury source reduction and recycling. Batteries and fluorescent lamps contribute to approximately three-quarters of mercury in MSW, and are expected to remain as significant sources of mercury in the near future. Reducing or eliminating the mercury contents in household products, particularly batteries and fluorescent lamps, should be the top priority in controlling mercury in MSW, while it is also important to set mercury contents in consumer products at acceptable and achievable levels based on a life-cycle approach. Meanwhile, cost-effective recycling programs should be developed targeting products containing elemental mercury, such as medical thermometers and sphygmomanometers, and waste products with high mercury contents (e.g., button cells) as well.  相似文献   

18.
On the basis of laboratory experiments with model mixtures, the steps in the de novo synthesis of halogenated compounds were studied. The study was performed using a thermobalance to evaluate the temperature of the maximum rate and the kinetics of the decomposition of the materials in the presence of air. The effect of the presence of CuCl2 and CuO with an atmosphere of HCl was studied. Analysis of the volatiles and solids after combustion in a horizontal furnace confirms the presence of organochloride compounds (including PCDD/F) at various temperatures. With the procedure that we followed, combustion is separated from pyrolysis, and it is possible to analyze the essential factors involved in the combustion process.  相似文献   

19.
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs)were analyzed in preserved paddy soils periodically collected from 7 sites around Japan since 1960 to trace the changes in concentrations, to elucidate their sources, and to estimate their mass balance in Japanese paddy fields. Concentrations of sigma PCDD/Fs in paddy soils from all sites increased during the 1960s and the 1970s, then decreased. The results of principal component analysis and chemical mass balance based on functional relationship analysis indicate that the increase in sigma PCDD/F concentrations in paddy soils was due to the increased use of pentachlorophenol (PCP) and chlornitrofen (CNP); more than 95% of PCDD/Fs in all paddy soils were derived from impurities in these herbicides. The half-lives of PCDD/F for disappearance from the paddy soils were estimated to be 10 to 20 years (mean: 17.3 years). The estimated PCDD/F mass balance using the above half-life during the past 40 years in paddy fields indicates that about 80% of PCDD/Fs have disappeared. The soil puddling (mechanically mixing of paddy soil with pooled irrigation water) is implied as one reason for the PCDD/F disappearance from paddy fields. However, as the amounts of PCDD/Fs added through the use of PCP and CNP were extremely large, PCDD/F concentrations in Japanese paddy soils will decrease gradually, and PCDD/F runoff from paddy fields to surrounding catchments will continue.  相似文献   

20.
Landfill gas contains numerous speciated organic compounds (SOCs) including alkanes, aromatics, chlorinated aliphatic hydrocarbons, alcohols, ketones, terpenes, chlorofluoro compounds, and siloxanes. The source, rate and extent of release of these compounds are poorly understood. The objective of this study was to characterize the release of SOCs and the regulated parameter, non-methane organic compounds (NMOCs) during the decomposition of residential refuse and its major biodegradable components [paper (P), yard waste (YW), food waste (FW)]. Work was conducted under anaerobic conditions in 8-L reactors operated to maximize decomposition. Refuse and YW were also tested under aerobic conditions. NMOC release during anaerobic decomposition of refuse, P, YW, and FW was 0.151, 0.016, 0.038, and 0.221 mg-C dry g(-1), respectively, while release during aerobic decomposition of refuse and YW was 0.282 and 0.236 mg-C dry g(-1), respectively. The highest NMOC release was measured under abiotic conditions (3.01 mg-C dry g(-1)), suggesting the importance of gas stripping. NMOC release was faster than CH4 production in all treatments. Terpenes and ketones accounted for 32-96% of SOC release in each treatment, while volatile fatty acids were not a significant contributor. Release in aerobic systems points to the potential importance of composting plants as an emissions source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号