首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了化学合成高纯铝酸钙水泥的物理特 性,包括强度发展、凝结时间、水化结合水量和水化放 热特性,并与市售的以传统烧结法生产的水泥进行了 在典型耐火浇注料中的应用比较。结果表明:(1)化 学合成高纯铝酸钙水泥胶砂的强度发展快且充分,早 期强度高;(2)化学合成高纯铝酸钙水泥的水化放热 速率在水化2h时最大,放热快且放热量集中;(3)化 学合成高纯铝酸钙水泥的水化活性较高;(4)化学合 成纯铝酸钙水泥用于耐火浇注料中,浇注料表现出较 高的烘干强度,且浇注料的烧后强度等性能指标也与 用传统烧结水泥的大体相当。  相似文献   

2.
朱伯铨  王玉龙  李享成 《硅酸盐学报》2014,42(11):1383-1388
合成了3种不同配比含镁铝尖晶石的铝酸钙水泥(CAM)。借助X射线衍射和扫描电子显微镜对合成的水泥试样进行了物相组成和显微结构分析,使用电导率仪、维卡仪和流变仪测定了CAM水泥净浆的水化和流变特性。结果表明:当水泥中镁铝尖晶石(MgAl2O4,MA)分布在一铝酸钙(CaAl2O4,CA)周围时,MA阻碍了CA与水的接触,水泥水化较难进行,水泥砂浆凝结时间较长,水泥净浆的屈服应力、表观黏度和触变性较小,储能模量G’增长速率也较小。MA和CA交错分布时,CA晶粒外形不规整,与水接触面积较大,水泥水化较易进行,水泥砂浆凝结时间较短,水泥净浆的屈服应力、表观黏度和触变性较大,储能模量G’增长速率也较大。而当MA分布于CA晶粒之间时,CA晶粒发育完整,水泥溶解过程较慢,水泥凝结时间和流变参数都处于中间值。  相似文献   

3.
为探究石粉对水泥基材料工作性能和凝结硬化的影响,开展了不同岩性石粉对水泥净浆流动度和凝结时间影响的试验研究,分析了掺石粉水泥净浆的流变性能及触变性经时变化特性,分析了石粉亚甲蓝值(MB值)对水泥净浆工作性能的影响规律。研究表明:水泥净浆流动度随着石粉MB值的增大而减小,水泥净浆的塑性粘度和屈服应力与石粉MB值存在较好的线性相关性;石灰石等碳酸盐类石粉的加入可缩短水泥净浆的凝结时间,花岗岩等硅酸盐类石粉的加入会延长水泥净浆的凝结时间。  相似文献   

4.
采用水化-煅烧-细磨方法对高铝水泥和纯铝酸钙水泥进行活化处理。测量了改性水泥的粒度、比表面积、凝结时间。试验结果表明,改性处理使以上耐火水泥的颗粒尺寸大大降低,比表面积增加;改性水泥中无大颗粒存在,其凝结时间满足施工要求.用改性水泥结合的浇注料的强度明显高于用原水泥结合的浇注料的强度。  相似文献   

5.
本文研究了萘系高效减水剂、聚羧酸高效减水剂及碳酸锂三种化学外加剂对铝酸盐水泥净浆流动度、凝结时间和胶砂强度影响.结果表明:两种高效减水剂均可有效地提高铝酸盐水泥的净浆流动度、降低流动度经时损失,并延长水泥的凝结时间,当在减水剂中复掺碳酸锂后水泥净浆的初始流动度扩大、经时损失加大、凝结时间缩短.两种高效减水剂和碳酸锂复合使用均会明显提高铝酸盐水泥的早期强度,但对后期强度的影响规律不同.经吸附量和X-衍射分析测试表明,碳酸锂对高效减水剂有辅助减水效应,而高效减水剂和碳酸锂只是改变了铝酸盐水泥的水化进程,而对水化产物的种类没有影响.  相似文献   

6.
为了提高铝酸钙水泥制品的疏水性,以铝酸钙水泥、聚二甲基硅氧烷、正硅酸乙酯、板状刚玉等为原料,研究了采用整体疏水改性时,疏水修饰剂聚二甲基硅氧烷加入量(分别为加水质量的0、1%、2%和5%)对铝酸钙水泥净浆凝结时间、净浆试样疏水性的影响,以及对刚玉浇注料试样的致密度、常温强度、疏水性能的影响。结果表明:1)随着疏水修饰剂聚二甲基硅氧烷加入量的增多,铝酸钙水泥净浆的初凝时间和终凝时间均有所延长。2)随着疏水修饰剂聚二甲基硅氧烷加入量的增多,浇注料试样的致密度缓慢减小,常温耐压强度和常温抗折强度显著减小;水接触角由113°增大至151°,疏水性能逐渐提高,且对酸、碱、沸水具有极高的稳定性。  相似文献   

7.
以溴化钙(CaBr2)、溴化锂(LiBr)和三异丙醇胺(TIPA)三组分制备低温早强剂,研究低温下,早强剂对净浆强度、凝结时间、流动度的影响,并从水化热、产物微观结构等角度出发,探讨其作用机理。结果表明:5℃低温时,低温早强剂的掺入使净浆初、终凝时间均略有所缩短,可明显加快试件的强度发展,掺低温早强剂净浆1、3、7、28 d抗压强度较对比样分别提高291%、78%、62%和40%,3 d后各龄期强度已超对比样20℃时强度。低温下,低温早强剂使水泥水化诱导期缩短、加速期提前,最大放热速率较对比样增大78%,12 h、7 d累计放热量则分别增大227%和52%。低温早强剂可促进水泥初期水化反应,使试样中Ca(OH)2含量增加、水化程度增大,水化12 h产物中即有大量Ca(OH)2生成,且生成了含溴C-S-H凝胶和水化溴氧铝酸钙[Ca4Al2O6Br2·10H2O]产物。水化产物相互堆积,细化了水化初期(7 d前)试件的孔径,大孔数量明显减少,净浆1、7 d总孔隙率较对比样分别减小16%、31%,试样微观结构更加致密。  相似文献   

8.
贾陆军  雷永林  蒋勇 《硅酸盐通报》2018,37(11):3422-3426
采用双氧水对木钙进行氧化改性处理,测试了改性前后木钙的减水率和对水泥净浆流动性以及凝结时间的影响.采用XRD、IR和SEM对水化不同时间的水泥净浆进行了微观分析.结果表明,改性后的木钙具有更大的减水率,能增大净浆的流动度,并且缓凝效果比改性前弱.微观分析发现,木钙减水剂能促进钙矾石的结晶析出,但会阻碍C3 S和C2 S的水化,对水泥起到缓凝作用.改性后的木钙具有更强的吸附能力,对钙矾石在水泥颗粒表面的沉淀吸附有抑制作用,所以缓凝效果被削弱.  相似文献   

9.
以溴化钙(CaBr2)、溴化锂(LiBr)和三异丙醇胺(TIPA)三组分制备低温早强剂,研究低温下,早强剂对净浆强度、凝结时间、流动度的影响,并从水化热、产物微观结构等角度出发,探讨其作用机理。结果表明:5℃低温时,低温早强剂的掺入使净浆初、终凝时间均略有所缩短,可明显加快试件的强度发展,掺低温早强剂净浆1、3、7、28 d抗压强度较对比样分别提高291%、78%、62%和40%,3 d后各龄期强度已超对比样20℃时强度。低温下,低温早强剂使水泥水化诱导期缩短、加速期提前,最大放热速率较对比样增大78%,12 h、7 d累计放热量则分别增大227%和52%。低温早强剂可促进水泥初期水化反应,使试样中Ca(OH)2含量增加、水化程度增大,水化12 h产物中即有大量Ca(OH)2生成,且生成了含溴C-S-H凝胶和水化溴氧铝酸钙[Ca4Al2O6Br2·10H2O]产物。水化产物相互堆积,细化了水化初期(7 d前)试件的孔径,大孔数量明显减少,净浆1、7 d总孔隙率较对比样分别减小16%、31%,试样微观结构更加致密。  相似文献   

10.
合成了阳离子单体甲基丙烯酰氧乙基三甲基氯化铵(DMC)引入量不同的聚羧酸减水剂,采用傅里叶红外光谱进行了结构确证.通过水泥净浆流动度、凝结时间、净浆和胶砂抗压强度测试,研究了阳离子单体不同引入量对聚羧酸减水剂分散性、凝结时间和早强性能的影响.通过XRD、TG对作用机理进行了分析.结果表明:DMC引入量占大单体4%时,净浆流动度达到最大值;引入DMC后,净浆凝结时间缩短,净浆和胶砂试件早期抗压期强度明显提高;当引入量占大单体12%时早强性能最好.由XRD和TG分析可知,引入DMC促进了C3S的早期水化,生成较多的水化硅酸钙和氢氧化钙.  相似文献   

11.
利用废弃混凝土制备全组分混凝土细粉,研究细粉对水泥标准稠度需水量、凝结时间、胶砂强度和化学结合水的影响,并采用XRD、TG-DSC等测试技术,研究其对水泥水化产物的影响.研究结果表明:细粉不影响水泥的标准稠度需水量,但缩短了水泥的凝结时间;低掺量下细粉对胶砂强度影响不大,但掺量超过10%时,胶砂强度随着掺量的增大不断降低;细粉的掺入虽然促进了浆体中水泥的水化,但却降低了浆体的总水化程度;细粉中的石灰石可以与水泥水化产物发生反应,生成单碳水化铝酸钙.  相似文献   

12.
通过不同掺量的速凝剂和石灰石粉对水泥浆体凝结时间、流动度、粘度、胶砂强度和水化进程的影响研究,探讨速凝剂与石灰石粉共同作用下对水泥浆体性能的影响。结果表明:石灰石粉能够提高水泥净浆的流动度和粘度,并且其流动度和粘度损失随着石灰石粉掺量的增加而增大。速凝剂掺量为5%时,石灰石粉掺量为5%,水泥的凝结时间进一步缩短,水泥胶砂3 d、7 d和28 d的抗压强度略有提高,当石灰石粉超过5%时,水泥的凝结时间随着石灰石粉掺量的增加反而延长,水泥的胶砂抗折、抗压强度随着石灰石粉掺量的增加而降低。水泥水化初始期和加速期的水化放热速率随着速凝剂掺量的增加而增加,掺加速凝剂后,水化加速期提前10 h,同时石灰石粉也能够提高水泥水化初始期和加速期的水化放热速率。掺加速凝剂后,水泥水化放热量反而降低了一半,但是加入石灰石粉后,水泥水化放热量增加。  相似文献   

13.
机制砂残留的不同浓度的絮凝剂会对混凝土相关性能产生不利影响。本文研究了三种絮凝剂(阴离子聚丙烯酰胺(APAM)、非离子聚丙烯酰胺(NPAM)和聚合氯化铝(PAC)),四种掺量(0%、0.015%、0.030%、0.050%,质量分数)对硅酸盐水泥流动度、凝结时间及力学性能的影响,并使用X射线衍射(XRD)和扫描电子显微镜(SEM)技术分析絮凝剂对硅酸盐水泥性能的影响机理,研究了减水剂、缓凝剂和分散剂在改善絮凝剂对砂浆流动度和力学性能产生的不利影响方面的作用。结果表明:APAM对净浆流动度的影响较大,NAPM的影响次之,PAC的影响不明显;APAM和NPAM均能小幅缩短净浆凝结时间,而PAC会小幅延长净浆凝结时间;三种絮凝剂均能小幅降低砂浆强度,且整体上掺量越高,下降幅度越大;三种絮凝剂基本不改变硅酸盐水泥水化产物,但APAM和PAC能促进水泥的水化,而NPAM抑制水泥的水化。共同使用减水剂和缓凝剂能显著提高掺有絮凝剂砂浆的流动度和抗压强度。  相似文献   

14.
《应用化工》2019,(10):2284-2288
通过试验研究了多壁碳纳米管(MWCNTs)掺量对水泥净浆的力学性能、水化特性、凝结时间、孔隙分布等性能的影响,并采用SEM(扫描电镜)观察与分析了MWCNTs改性水泥净浆的微观形貌。结果表明,MWCNTs的掺入会降低水化过程中矿物的溶解速率,因而延缓了水泥的水化进程;在适宜的掺量范围内,MWCNTs能够有效提升水泥净浆的力学强度,但当其掺量过高时,反而会对力学强度造成不利影响;MWCNTs在水泥净浆中能够分散均匀并降低水泥净浆的孔隙率,使其变得更加密实。  相似文献   

15.
铝酸钙水泥的异常凝结行为   总被引:1,自引:0,他引:1  
硅酸盐水泥的水化速率总是随水化温度升高而增大。而在18~30℃范围内,铝酸钙水泥的水化速率随温度升高而降低,这就是所谓的铝酸钙水泥的异常凝结行为。通过比较工业铝酸钙水泥与合成纯铝酸钙的凝结行为,证明这种行为是铝酸钙水泥本身具有的,而不是掺入物引起的。铝酸钙水泥的异常凝结行为与其水化严物的结构、成核及生长等因素有关。本文还指出了对于这一现象有待进一步研究的问题。  相似文献   

16.
含镁铝尖晶石的铝酸盐水泥的制备及其抗侵蚀性   总被引:1,自引:0,他引:1  
以白云石和工业Al2O3为原料,采用烧结法制备了含镁铝尖晶石的铝酸盐新型水泥,利用X射线衍射检测了合成产物的物相组成,采用扫描电子显微镜观察了新型铝酸盐水泥中各物相的形貌和能谱分析了成分分布,测量了这种铝酸盐水泥的凝结时间、耐火度以及其所结合的高铝矾土制成的耐火浇注料的早期强度.选择静态坩埚法进行抗渣性实验,对比了新型铝酸盐水泥和纯铝酸钙水泥结合刚玉浇注料的抗渣性差异.结果表明:这种水泥的物相组成为镁铝尖晶石、一铝酸钙和二铝酸钙;物相分布较为均匀.与纯铝酸钙水泥比较,凝结时间正常,新型铝酸盐水泥结合刚玉浇注料与纯铝酸钙水泥结合刚玉浇注料的抗弯强度相当,耐火度较高和抗侵蚀性较好,其原因在于水泥中存在镁铝尖晶石相,而镁铝尖晶石有较高的熔点和抗熔渣侵蚀能力.  相似文献   

17.
《应用化工》2022,(10):2284-2288
通过试验研究了多壁碳纳米管(MWCNTs)掺量对水泥净浆的力学性能、水化特性、凝结时间、孔隙分布等性能的影响,并采用SEM(扫描电镜)观察与分析了MWCNTs改性水泥净浆的微观形貌。结果表明,MWCNTs的掺入会降低水化过程中矿物的溶解速率,因而延缓了水泥的水化进程;在适宜的掺量范围内,MWCNTs能够有效提升水泥净浆的力学强度,但当其掺量过高时,反而会对力学强度造成不利影响;MWCNTs在水泥净浆中能够分散均匀并降低水泥净浆的孔隙率,使其变得更加密实。  相似文献   

18.
研究了用超声分散的碳纳米管对硅酸盐水泥物理力学性能的影响,并利用XRD和SEM等测试手段对碳纳米管改性水泥的水化产物及硬化浆体的形貌进行了分析.结果表明:碳纳米管的掺入改变了水泥净浆的标准稠度用水量和凝结时间,提高了其抗压和劈裂抗拉强度,但并未造成安定性不良.随碳纳米管掺量的增加,水泥净浆的标准稠度用水量逐渐增加,凝结时间不断缩短,标养28天的抗压和疲劳抗拉强度较未掺碳纳米管的硬化浆体分别提高了15.34%和18.44%.XRD分析表明碳纳米管的掺入不仅提高了水泥净浆的水化程度,增加了C-S-H的生成量,而且降低CH的结晶度.SEM证明碳纳米管的掺入较未掺的水泥净浆硬化浆体结构趋于优化,更致密.  相似文献   

19.
通过凝结时间试验、量热分析、TG-DSC分析和XRD分析研究了石灰石粉对水泥水化特性的影响.试验结果表明:石灰石粉能够促进水泥的凝结硬化,改变水泥水化历程,使诱导期缩短,加速期提前;石灰石粉导致新相水化碳铝酸钙的形成,对水泥水化产物产生影响.  相似文献   

20.
为了研究煤中的硫含量对铝酸盐水泥的物相组成和浇注料性能的影响,选取以不同硫含量的煤为燃料煅烧的两种不同硫含量的CA-50铝酸盐水泥为研究对象,分析了煤中硫含量的增加对水泥熟料物相组成的影响,并用碳硫仪、XRD、SEM和EDS分析了原料和熟料中硫的含量和存在形式,比较了两种铝酸盐水泥结合浇注料的性能。结果表明:煤中硫含量的增加导致水泥中硫铝酸钙含量的增加,进而影响浇注料中水泥的水化过程,推迟了水化产物产生大量沉淀的时间,降低了最高放热温度,提高了24 h养护后的耐压强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号