共查询到19条相似文献,搜索用时 55 毫秒
1.
对电机绝缘系统的典型放电脉冲采用二维谱图提取的放电指纹特征,用支持向量机方法来识别不同的放电类型.识别结果令人满意,表明了支持向量机适于局部放电的识别,对改善局部放电在线监测系统的性能以及该项技术的实用化起到了一定作用. 相似文献
2.
对电机绝缘系统的典型放电脉冲采用二维谱图提取的放电指纹特征,用支持向量机方法来识别不同的放电类型.识别结果令人满意,表明了支持向量机适于局部放电的识别,对改善局部放电在线监测系统的性能以及该项技术的实用化起到了一定作用. 相似文献
3.
基于支持向量机的故障模式识别研究 总被引:1,自引:1,他引:1
支持向量机为因缺乏大量故障样本受到制约的智能诊断提供了一个全新的途径.从振动信号中提取特征向量作为支持向量机的输入,对滚动轴承故障模式进行识别.实验表明,在含噪声条件下支持向量机对滚动轴承故障模式仍然具有优秀的分类性能. 相似文献
4.
针对属性特别多仅用一种属性约简方法难以实现有效约简的情况,提出了基于双重属性约简的混合支持向量机分类方法.通过引入贡献率和正确率两个概念,首先采用主成分分析算法计算各个条件属性的贡献率,根据贡献率大小和给定的阈值去掉条件属性中贡献率小的成分,提取信息量最大的主要成分;然后再基于粗糙集的属性约简理论,计算这些主要成分对决策变量的正确率,对这些属性进行第二次约简;该方法采用定性定量相结合的方式,可以最大程度地去除属性集中冗余的或不重要的属性,保证将最简的属性样本集输入支持向量机进行建模预测.最后的仿真试验验证了我们所提方法的有效性和正确性. 相似文献
5.
根据统计学习理论,间隔大小是反映泛化能力的一个很重要的方面. 受一类支持向量机(SVM)的启发,提出的双边界SVM能分别用2个边界对2类问题分类. 它能在保证分类正确的同时保证分类间隔的最大化,理论上分别从推广性能和不平衡类分布2方面证明了其优越性. 标准数据集上的实验表明,双边界SVM得到的分类间隔要大于SVM, 泛化性有了显著提高;另外,不平衡数据集上分析得到它对少数类识别率有明显提升. 真实入侵数据测试结果表明,双边界SVM算法比边界样本选择算法的检测率高出2%以上. 相似文献
6.
支持向量机的快速分类算法 总被引:3,自引:0,他引:3
支持向量机(SVM)算法在训练集的规模很大特别是支持向量很多时,支持向量机的学习过程需要占用大量的内存,算法的速度较慢。为此,笔者提出一种新的SVM快速分类算法。该算法通过选择边界向量,构造新的训练样本,减少了参与训练的样本数目。实验证明,该算法不仅能保证原算法的精度,具有良好的推广能力,而且提高了算法的速度。 相似文献
7.
8.
针对常用的梯度下降法支持向量机参数选择方法易陷入局部极小点的问题,提出一种基于混合遗传算法的支持向量机参数选择方法.该方法结合遗传算法的全局优化能力和梯度法的局部寻优能力,能够选择到更好的支持向量机参数.仿真实验表明,使用该方法确定的参数可使支持向量机具有更好的泛化性能. 相似文献
9.
为了扩展支持向量机在大规模数据集和成批出现数据领域的应用,提出了一种基于支持向量机的增量式学习算法.利用标准的支持向量机算法训练得到初始的目标概念,通过增量式步骤不断更新初始的目标概念.更新模型是求解一个与标准支持向量机具有类似的数学形式的凸二次规划问题.证明了在可分情况下,如果新增加的样本不是位于边界区,那么增量式过程既不会改变分类平面也不会改变分类平面的表达.与现有的增量式支持向量机算法相比,该算法无需额外计算就可实现增量式的逆过程并且训练时间与增量式步骤数成反比.实验结果表明,该算法满足稳定性、能够不断改进性能以及性能回复三个准则. 相似文献
10.
11.
支持向量机在字符分类识别中的应用 总被引:5,自引:0,他引:5
为了对数字字符和字母字符进行有效识别,提出了一种利用二值字符图像投影的特征参数构
造字符特征矢量的方法,对这些特征矢量进行归一化处理并作为支持向量机的训练集。采用支持向量机和
多层感知器网络对字符的特征矢量进行训练,分别构造出26个字母分类器、10个数字分类器以及36个字母
-数字综合分类器。通过对字符的分类识别测试,字符识别的准确率平均为96.5%,识别速度平均为20.5
ms/字符,结果表明了支持向量机在字符识别应用中的有效性。 相似文献
造字符特征矢量的方法,对这些特征矢量进行归一化处理并作为支持向量机的训练集。采用支持向量机和
多层感知器网络对字符的特征矢量进行训练,分别构造出26个字母分类器、10个数字分类器以及36个字母
-数字综合分类器。通过对字符的分类识别测试,字符识别的准确率平均为96.5%,识别速度平均为20.5
ms/字符,结果表明了支持向量机在字符识别应用中的有效性。 相似文献
12.
将自回归时间序列(AR)模型和支持向量机方法结合应用于结构的损伤诊断,以一个3层框架结构为分析对象,模拟两种损伤模式:初始线性结构发生质量变化和初始非线性结构发生质量变化.首先对实验中采集到的加速度信号建立AR模型,从而提取模型参数作为损伤特征,再利用支持向量机进行损伤诊断.结果表明,在小样本情况下基于自回归支持向量机进行结构非线性损伤诊断,能够得到很好的结果. 相似文献
13.
一种混合核函数支持向量机算法 总被引:6,自引:1,他引:6
提出一种基于混合核函数的支持向量机算法.首先证明了常用核函数的非负线性组合也是满足Mercer条件的核函数.然后通过最小化衡量二次损失函数支持向量机泛化能力的RM界来进行各子核函数参数、混合核函数组合系数以及惩罚系数的选取.仿真实验表明,基于混合核函数的支持向量机的泛化性能优于基于单一核函数的支持向量机. 相似文献
14.
针对传统逆系统方法中逆模型难以建立的问题,提出了基于最小二乘支持向量机(LS-SVM)的α阶时延逆系统控制方法.通过分析LS-SVM的函数拟合特性,以离散非线性系统为例,证明了基于LS-SVM阶时延逆系统存在的充分条件.利用具有径向基(RBF)核函数的LS-SVM,离线建立了被控对象的非线性逆模型.把得到的逆系统串连在原系统之前,得到基本上线性化的伪线性复合系统,将复杂的非线性问题转化为线性问题,利用线性系统的理论实现了伪线性系统的综合.仿真结果表明,该方法适应于较一般的离散非线性系统,且在没有被控对象先验知识的情况下,能准确地建立非线性系统的逆模型. 相似文献
15.
支持向量机及其在岩土工程中的应用 总被引:2,自引:0,他引:2
在智能岩石力学的研究方法中,专家系统方法是基于专家和经验判断进行问题求解的非数值分析方法,因为领域知识获取的困难,限制了其发展;而神经网络方法是基于大样本的一种方法,其推广能力较差.为了克服专家系统知识获取的“瓶颈”问题和人工神经网络的推广能力差的问题,基于统计学习理论的支持向量机方法为岩土工程的智能化研究提供了新的途径.主要介绍了支持向量机方法及其在岩土工程领域的应用现状,并指出其理论存在的问题和未来的发展方向. 相似文献
16.
为了克服最小二乘支持向量机对于孤立点过分敏感的问题,将模糊隶属度概念引入最小二乘支持向量机中,提出了基于支持向量域描述的模糊最小二乘支持向量回归机.该方法先对样本进行数据域描述得到一个包含该组数据的最小半径的超球,再根据特征空间中样本与超球球心的距离确定它们的隶属度,减少了奇异点(噪声)的影响;把所要求解的约束凸二次优化问题转化为正定线性方程组,并采用快速Cholesky分解的方法求解该方程组.实验结果表明该方法在不牺牲训练速度的前提下,比支持向量机和最小二乘支持向量机具有更高的预测精度. 相似文献
17.
支持向量机α阶逆系统控制——连续非线性系统 总被引:1,自引:0,他引:1
针对传统逆系统方法中逆模型难以建立的问题,提出了连续非线性系统基于最小二乘支持向量机(LS-SVM)α阶的逆系统控制方法.该方法用具有径向基核函数(RBF)的LS-SVM,离线建立被控对象的静态非线性逆模型.由静态非线性逆模型外加若干表征非线性动态特性的积分器, 构成了连续非线性系统的α阶逆系统.将得到的LS-SVM α阶逆系统串连在原系统之前,得到基本上线性化的伪线性系统,进而将复杂的非线性问题转化为线性问题.仿真结果表明,在没有被控对象先验知识的情况下,利用该方法能准确地建立连续非线性系统的逆模型.基于SVM的α阶逆系统方法适应于较一般的连续非线性系统,且具有良好的控制性能. 相似文献
18.
提出可以对电梯交通模式进行模糊识别的方法.采用最小二乘支持向量机(LSSVM)的回归算法来学习2种交通模式的相对隶属度,通过相对比较法得到当前时刻所有交通模式的隶属度.介绍了LSSVM二值分类算法及传统的多值分类算法,分析LSSVM多值分类与函数回归的关系.分析结果表明,采用函数回归算法可以进行多值分类.若以交通模式的隶属度作为类标,则可采用LSSVM的回归算法来进行2种交通模式的模糊分类.为了提高LSSVM的线性度,分3步逐步细分电梯客流的交通模式.实验结果表明,采用该方法得到的各交通模式隶属度随时间的变化曲线与依据群控专家经验得到的曲线非常相似,识别结果的平均误差小于应用神经网络识别的平均误差,可将识别结果作为电梯群控系统的输入参数. 相似文献
19.
回归型加权支持向量机方法及其应用 总被引:13,自引:1,他引:13
针对各样本重要性的差异,提出了给各个样本的惩罚系数和误差要求赋予不同权重的加权支持向量机方法.给出了对偶最优化问题的描述及其SMO训练算法.在近红外光谱汽油辛烷值测定实验中,训练样本的重要性通过测试样本与该样本的空间距离来表征.实验表明采用加权支持向量机方法提高了汽油辛烷值的测量精度,从而说明了该方法可以提高回归估计函数的泛化能力. 相似文献