首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zeolite NaA membranes were prepared hydrothermally by secondary crystallization process at different temperatures (55°C–75°C) on porous α‐alumina‐based support tubes (inner side) precoated with poly(ethyleneimine) (PEI) buffer layer and NaA seed particles. The NaA seed crystals synthesized at 65°C/2 h in the size range 100–200 nm having BET surface area of 71.57 m2g?1 were used for secondary crystallization of the membranes. The secondary crystallization at 65°C for (4 + 4) h (double‐stage) showed highly dense NaA grains in the microstructure of the membrane with a thickness of 5 μm. It rendered the permeance values of 50.6 × 10?8, 2.47 × 10?8, and 0.55 × 10?8 molm?2s?1Pa?1 for H2, N2, and CO2, respectively, with their permselectivity of 20.48 (H2/N2), 92 (H2/CO2), and 4.49 (N2/CO2). A tentative mechanism was illustrated for the interaction of PEI with the support substrate and NaA seed crystals.  相似文献   

2.
A low cost macroporous support for ceramic membranes was prepared by in situ reaction sintering from local natural mineral kaolin with dolomite as sintering inhibitor. The characterization focused on the phase evolution, microstructure, pore structure, mechanical strength and water permeability at various compositions and sintering temperatures. The sintering of kaolin was improved with 5 wt% dolomite, but clearly inhibited with ≥10 wt% dolomite. For the 20 wt% dolomite samples, the crystalline phases were mainly composed of mullite, cordierite and anorthite after sintering between 1,150 and 1,300 °C. Moreover, both mean pore size and mechanical strength increased with increasing sintering temperature from 1,100 to 1,300 °C, but the water permeability and porosity decreased. The 1,250 °C sintered macroporous support with 20 wt% dolomite exhibited good performances such as porosity 44.6%, mean pore size 4.7 μm, bending strength 47.6 MPa, water permeability 10.76 m3 m−2 h−1 bar−1, as well as good chemical resistance. This work provides opportunities to develop cost-effective ceramic supports with controllable pore size, porosity, and high strength for high performance membranes.  相似文献   

3.
New hybrid membranes containing polyvinyl alcohol (PVA) and poly(tetramethylene oxide) (PTMO) with heteropolyacid (HPA) as a hydrophilic inorganic modifier in an organic/inorganic matrix were developed for low-temperature proton exchange membrane fuel cells (PEMFCs). A maximum conductivity of 4.8 × 10−3 S cm−1 was obtained at 80 °C and 75% RH for PVA/PWA/PTMO/H3PO4 (10/15/70/5 wt%), whereas the PVA/SiWA/MPTS/H3PO4 (50/10/10/30 wt%) membrane demonstrated a maximum conductivity of 8.5 × 10−3 S cm−1 under identical conditions. These hybrid composite membranes were subsequently tested in a fuel cell. A maximum current density of 240 mA cm−2 was produced at 70 °C for the PVA/PWA/PTMO/H3PO4 membrane, and the corresponding value for the PVA/SiWA/MPTS/H3PO4 membrane under identical conditions was 230 mA cm−2. The small deviations in cell performance can be explained in terms of the variations in thickness of the membranes as well as differences in their conductivities. The fuel cell performances of these membranes decreased drastically when the temperature was increased to 100 °C.  相似文献   

4.
A series of covalently and ionically crosslinked sulfonated poly(arylene ether ketone)s (SPAEKs) were prepared via the cyclocondensation reaction of crosslinkable SPAEKs with 3,3′-diaminobenzidine to form quinoxaline groups, where crosslinkable SPAEKs were synthesized by copolymerization of 4,4′-biphenol with 2,6-difluorobenzil, 4,4′-difluorobenzophenone, and 5,5′-carbonyl-bis(2-fluorobenzene sulfonate). The SPAEK membranes had high mechanical properties and the isotropic membrane swelling. The covalent and ionical crosslinking significantly improved the membrane performance, i.e., the crosslinked membranes showed the lower membrane dimensional change, lower methanol permeability, and higher oxidative stability than the corresponding uncrosslinked membranes, with keeping the reasonably high proton conductivity. The crosslinked membrane (CK3) with measured ion exchange capacity of 1.62 mequiv g−1 displayed a reasonably high proton conductivity of 110 mS/cm with water uptake of 33 wt% at 80 °C, and exhibited a low methanol permeability of 1.7 × 10−7 cm2 s−1 for 32 wt% methanol solution at 25 °C. The covalently and ionically crosslinked SPAEK membranes have potential for polymer electrolyte membrane fuel cells and direct methanol fuel cells.  相似文献   

5.
Recovery of phytosterols from sunflower oil deodorizer distillates   总被引:2,自引:0,他引:2  
Phytosterols are usually recovered by crystallization from the deodorizer distillate (DD) of vegetable oils. In this work, the impact of the principal process variables (viz., solvents and cosolvents, cooling rate, crystallization temperature, and ripening time) on the quality and yield of the recovered phytosterols was studied by using a sunflower oil DD “enriched” (i.e., preconcentrated) via transesterification with ethanol (EDD) as a feedstock and commercial hexane as solvent (S), with S/EDD mass ratios of 3 to 5. Water (0 to 4.5 wt%) and ethanol (0 to 10 wt%) were used as cosovents, with crystallization temperatures between 0 and −20°C and crystallization times from 4 to 96 h. The cooling rate was either −20°C/h or “brisk chilling” from 40 to −5°C. The nature and composition of the EDD solvent and cosolvent composite arose as the most important process variable, strongly influencing both the percentage of sterol yield and the purity of the crystals, as well as their filterability and washability. Water-saturated hexane sufficed to give good crystallization, yet the beneficial effect of adding water as the single cosolvent was enhanced by adding small and precise amounts of ethanol. A recovery of sterols as high as 84% (with 36% purity) was achieved by using a single-stage batch crystallization of the S/EDD mixture (S/EDD=mass ratio 4).  相似文献   

6.
Dice-shaped zeolite A (NaA) was prepared via direct dissolution of rice husk ash (96.5% SiO2) in the presence of NaOH and sodium aluminate solution by autoclave process at 90°C/6 h without using any templating agent. The prepared particles were characterized by DTA/TG, XRD, FTIR, N2 adsorption-desorption physisorption analysis, FESEM, and TEM. XRD results confirmed crystallization of pure NaA zeolite phase. FTIR study shows the characteristic bands at 554 cm−1 for double 4 membered ring (D4R) of NaA zeolite. The total BET surface area of the product was found to be 31.6 m2 g−1. FESEM and TEM images show dice shaped NaA particles of size around 1 μm which is formed via oriented crystalline aggregation of primary particles (30-40 nm). A tentative mechanism was proposed for the formation of NaA crystals through direct dissolution of rice husk ash. The synthesized NaA zeolite could be used for purification of alcohol and separation of toxic and radioactive ions from waste water via a cost-effective process.  相似文献   

7.
Composite cathodes with La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) and Ce0.9Gd0.1O1.95 (GDC) are investigated to assess for solid oxide fuel cell (SOFC) applications at relatively low operating temperatures (650–800 °C). LSCF with a high surface area of 55 m2g−1 is synthesized via a complex method involving inorganic nano-dispersants. The fuel cell performances of anode-supported SOFCs are characterized as a function of compositions of GDC with a surface area of 5 m2g−1. The SOFCs consist of the following: LSCF-GDC composites as a cathode, GDC as an interlayer, yttrium stabilized zirconia (YSZ) as an electrolyte, Ni-YSZ (50: 50 wt%) as an anode functional layer, and Ni-YSZ (50: 50 wt%) for support. The cathodes are prepared for 6LSCF-4GDC (60: 40 wt%), 5LSCF-5GDC (50: 50 wt%), and 4LSCF-6GDC (40: 60 wt%). The 5LSCF-5GDC cathode shows 1.29 Wcm−2, 0.97 Wcm−2, and 0.47 Wcm−2 at 780 °C, 730 °C, and 680 °C, respectively. The 6LSCF-4GDC shows 0.92 Wcm−2, 0.71 Wcm−2, and 0.54 Wcm−2 at 780 °C, 730 °C, and 680 °C, respectively. At 780 °C, the highest fuel cell performance is achieved by the 5LSCF-5GDC, while at 680 °C the 6LSCF-4GDC shows the highest performance. The best composition of the porous composite cathodes with LSCF (55 m2g−1) and GDC (5 m2g−1) needs to be considered with a function of temperature.  相似文献   

8.
Metal supported cells as developed according to the DLR SOFC concept by applying plasma deposition technologies were investigated for use as solid oxide electrolyser cells (SOEC) for high temperature steam electrolysis. Cells consisting of a porous ferritic steel support, a diffusion barrier layer, a Ni/YSZ hydrogen electrode, a YSZ electrolyte and a LSCF oxygen electrode were electrochemically characterised by means of i-V characteristics and electrochemical impedance spectroscopy measurements including a long-term test over 2000 h. The cell voltage during electrolysis operation at a current density of −1.0 A cm−2 was 1.28 V at an operating temperature of 850 °C and 1.4 V at 800 °C. A long-term test run over 2000 h with a steam content of 43% at 800 °C and a current density of −0.3 A cm−2 showed a degradation rate of 3.2% per 1000 h. The impedance spectra revealed a significantly enhanced polarisation resistance during electrolysis operation compared to fuel cell operation which was mainly attributed to the hydrogen electrode.  相似文献   

9.
In this work the metallic cobalt was electrodeposited on 430 steel in order to obtain a low electrical resistance film made to Co3O4. Pure cobalt was obtained by acidic dissolution of lithium cobalt oxide (LiCoO2) present in exhausted Li-ion battery cathode. The electrodeposition was performed with a 96% efficiency at a potential of 1.50 V versus Ag/AgCl. The electrodeposited cobalt showed the face-centered cubic (23%) and hexagonal centered (77%) phases. After oxidation at 850 °C for 1000 h in air, the cobalt layer was transformed into the Co3O4 phase. On the other hand, a sample without cobalt showed the usual Cr2O3 and FeCr2O4 phases. After 1000 h at 850 °C, in air the area specific resistance of the sample with the cobalt oxide layer was 0.038 Ω cm−2, while it was 1.30 Ω cm−2 for the bare sample.  相似文献   

10.
MFI-type zeolite membranes were hydrothermally synthesized as a thin layer on macroporous α-alumina discs coated with 1µm MFI-type seed crystals as seed. The effect of soda (Na2O) concentration on the morphology of the membranes was investigated. Soda concentration, and thus the hydroxyl ion concentration, was changed between 0.25 and 6.5 mol/mol gel. At low soda concentrations the crystals forming the layer exhibited mostly (h0h)/c-axis orientation, but at high soda concentrations a membrane layer formed from randomly oriented crystals. The membranes showed high H2/n-butane ideal selectivity of 476 and 36 at 25°C and 150°C, respectively.  相似文献   

11.
We report on the preparation and selected properties of some new biodiesels which we synthesized from oils of plants growing in Northern Wisconsin and Minnesota. The composition and the low-temperature properties such as crystallization onset T c and end of melting T m investigated with the help of differential scanning calorimetry are presented. Some of these biodiesels exhibited remarkably good low-temperature characteristics. In order to further improve these properties, we use a variety of alcohols during the transesterification process, including isopropyl, 2-butyl, and isoamyl alcohols. Using several parameters such as oil content and crystallization onset temperature T c, plant species that appear most promising have been identified, among those highbush cranberry (T c ≈ −31 °C for its methyl esters, T c ≈ −41 °C for its 2-butyl esters), dotted horsemint (T c ≈ −17 °C for its methyl esters, T c ≈ −40 °C for its 2-butyl esters), and American hazelnut (T c ≈ −19 °C for its methyl esters, T c  ≈ −30 °C for its 2-butyl esters).  相似文献   

12.
《Ceramics International》2023,49(12):20290-20297
In this work, the Sm0.2Ce0.8O1.9 (SDC) buffer layer was used to replace the Gd0.1Ce0.9O1.95 (GDC) buffer layer to improve the long-term stability and performance of the solid oxide fuel cells (SOFCs) in the intermediate temperature (550–750 °C). The buffer layer was prepared by screen printing method. The micromorphology of the SDC buffer layer and the cell structures was observed by scanning electron microscopy (SEM). The electrochemical impedance spectroscopy (EIS) results showed that the polarization resistance (RP) of the cell with SDC buffer layer was smaller than that of the cell with GDC buffer layer, reducing the RP values by 43.52% and 43.33%, respectively (SDC-cell: 0.12 Ω cm2 at 650 °C and 0.27 Ω cm2 at 600 °C). The maximum power density of the cell with SDC buffer layer is 560 mW cm−2 at 650 °C, which was 25% higher than that with GDC buffer layer. The long-term durability of the cell with SDC buffer layer was better than that of the cell with GDC buffer layer. These provide an excellent prospect for utilizing SDC buffer layer.  相似文献   

13.
《Ceramics International》2022,48(18):25975-25983
This work reports the innovative development of a borosilicate glass/Al2O3 tape for LTCC applications using an eco-friendly aqueous tape casting slurry. Polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) were the respective dispersants, while carboxymethyl cellulose (CMC) and styrene acrylic emulsion (SA) were the respective binders. The results showed that PVP was more suitable than PAA as the dispersant for the aqueous casting slurry, and that 1.5 wt% PVP would achieve well dispersion of CABS glass/Al2O3 powder in the aqueous slurry. Moreover, a small amount of 2.0 wt% CMC binder could yield smooth CABS glass/Al2O3 tapes crack free. A high-quality CABS glass/Al2O3 tape with a smooth surface was made from an aqueous slurry containing 1.5 wt% PVP dispersant, 2.0 wt% CMC binder, and 2.0 wt% PEG-400 plasticizer. The density, tensile strength, and surface roughness of the green tape were 2.05 g/cm3, 0.87 MPa, and 148 nm, respectively. The resulting CABS glass/Al2O3 composites sintered at 875 °C exhibited a bulk density of 3.14 g/cm3, a dielectric constant of 8.09, a dielectric loss of 1.0 × 10?3, a flexural strength of 213 MPa, a thermal expansion coefficient of 5.30 ppm/°C, and a thermal conductivity of 3.2 W m?1 K?1, thus demonstrating its broad prospects in LTCC applications.  相似文献   

14.
Mesoporous silica templated by Pluronic F68 was synthesized and characterized by TEM, N2 adsorption–desorption isotherms and FT–IR spectra. The sample had a high specific surface area (761 m2 g−1) and the mean pore diameter was 4.7 nm, indicating that it can be used as porcine pancreatic lipase (PPL) support. The physical adsorption of PPL on this mesoporous material in phosphate buffer solution with different pH values has been studied. The maximum adsorbed amount was observed at pH 7.0 and amounted to 826 mg g−1 and the maximum activity value of immobilized PPL was 227 μmol g−1 min−1. The optimal pH and temperature of the hydrolysis of triacetin for the immobilized PPL were at 8.0 and 45 °C, while they were at pH 7.0 and 35 °C for free PPL. The immobilized PPL showed excellent adaptability in higher pH and excellent heat resistance compared to free PPL. The retained activity of immobilized PPL was found to be ca. 50% of its original activity after the 5th reuse.  相似文献   

15.
Monodisperse spherical polyacrylonitrile (PAN) nanoparticles were successfully prepared for the first time by dispersion polymerization of acrylonitrile (AN) in water using well-defined poly(N-vinyl pyrrolidone) (PVP) that was end-capped by a cobalt(II) acetylacetonate (Co(acac)2) complex (PVP-Co(acac)2) as both a macroinitiator and a colloidal stabilizer. The well-defined PVP-Co(acac)2 (Mn = 14,000 g/mol, PDI = 1.25) was synthesized by the bulk cobalt-mediated radical polymerization of N-vinyl pyrrolidone at 20 °C using 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile) as an initiator and Co(acac)2 as a regulating agent. The PVP macroradicals generated at 30 °C by the homolytic cleavage of the C–Co bonds in PVP-Co(acac)2 initiated the dispersion polymerization of AN, as well as successfully stabilized the growing PAN particles. The average diameters of PAN nanoparticles synthesized with 20, 30, 40, and 50 wt% of PVP-Co(acac)2 at 30 °C for 24 h were 263.5, 163.1, 157.3, and 143.5 nm, respectively. The PAN nanoparticles had a slightly crumpled spherical appearance, and the degree of crystallinity of the PAN nanoparticles prepared using 30 wt% of PVP-Co(acac)2 was 31.2%. The mol% of VP units in the PAN nanoparticles was about 6 mol%, and the PVP chains were present on the surface of the PAN nanoparticles as a stabilizing layer. The PVP hairy chains could successfully stabilize very small Ag nanoparticles on the surface of the PAN nanoparticles.  相似文献   

16.
Hard anodizing of three different cast aluminum substrates (i.e. Al99.8 wt%, Al-10 wt% Si, Al-10 wt% Si-3.5 wt% Cu) was performed in 2.25 M H2SO4 electrolyte at 0 °C. The effects of substrate composition, current density and convection regime on electrode temperature evolution were investigated. Temperature transients followed the voltage transients during anodizing. At a current density of 6.0 A dm−2, the electrode temperatures increased with alloying whereas at 30 A dm−2 the temperature reached a steady value around 65 °C and severe oxide dissolution effects were visible on the surface of the anodized specimens. Further, at this current density and under forced convection regime, highest temperature values were recorded for the Al99.8 wt% substrate and were accompanied by fluctuations. Forced convection significantly reduced the electrode temperatures during the non-uniform oxide growth for all three compositions and increased the oxide layer thickness.  相似文献   

17.
Nickel was electrodeposited from NiCl2-1-ethyl-3-methylimidazolium chloride at various temperatures at a constant potential. It was observed that by varying the electrolysis temperature, face centered cubic (FCC) and hexagonal close packed structured (HCP) nickel could be produced. From spectroscopic studies, it could be said that H+ ions played an important role in the formation of HCP nickel. The hydrogen content in HCP nickel was found to be 1.2 wt%. From the Chronoamperometric studies, the diffusion coefficient of the electroactive species for the electrodeposition of nickel at 150 °C was estimated to be 1.1 × 10−5 cms−1.  相似文献   

18.
Single layer La0.6Sr0.4Co0.2Fe0.8O3 hollow fibre (HF) precursors (<1 mm ID) produced by phase inversion (PI) were sintered at 1,200, 1,350 and 1,400 °C. The increase in sintering temperature resulted in microstructural changes in the LSCF fibres, reflected in their electrical conductivities. LSCF-based cathodes with different designs were brushed onto co-extruded nickel–gadolinium-doped ceria (CGO) anode/CGO electrolyte dual-layer HFs (<1 mm ID) fabricated by PI. The effect of cathode layers on the overall performance of the fuel cells (FCs) was assessed using nearly identical anode and electrolyte compositions, thicknesses, and microstructures. Cathode microstructure design caused cells to perform differently producing peak power densities of 0.35–0.7 W cm−2 at 600 °C. Impedance spectroscopy analysis at 600 °C on the FCs produced 0.12–0.24 Ω cm2 confirming the cathode’s structural effect on the overall area-specific resistance of the FCs. The best performing FC with a brush-deposited cathode was compared to a similar FC where cathode was deposited by dip coating; at 600 °C the first produced 0.6 W cm−2 while the second cell 0.7 W cm−2. Co-extruding anodes and electrolytes by using PI and combining dip coating for cathode deposition could lead to the fabrication of FCs with enhanced microstructures and improved performances.  相似文献   

19.
Dual‐phase oxygen transport membranes are fast‐growing research interest for application in oxyfuel combustion process. One such potential candidate is CGO‐FCO (60 wt% Ce0.8Gd0.2O2?δ–40 wt% FeCo2O4) identified to provide good oxygen permeation flux with substantial stability in harsh atmosphere. Dense CGO‐FCO membranes of 1 mm thickness were fabricated by sintering dry pellets pressed from powders synthesized by one‐pot method (modified Pechini process) at 1200°C for 10 h. Microstructure analysis indicates presence of a third orthorhombic perovskite phase in the sintered composite. It was also identified that the spinel phase tends to form an oxygen deficient phase at the grain boundary of spinel and CGO phases. Surface exchange limitation of the membranes was overcome by La0.6Sr0.4Co0.2Fe0.8O3?δ (LSCF) porous layer coating over the composite. The oxygen permeation flux of the CGO‐FCO screen printed with a porous layer of 10 μm thick LSCF is 0.11 mL/cm2 per minute at 850°C with argon as sweep and air as feed gas at the rates of 50 and 250 mL/min.  相似文献   

20.

Abstract  

The coordination and organometallic chemistry of a series of diazene (N2)-bridged Ni(II) catalysts derived from pyrazole-scaffold-based ligands bearing alkyl and aryl pendent arms was investigated. Binucleating ligands were obtained as products of the condensation reaction between 3,5-dichloroformyl-1H-pyrazole and aliphatic/aromatic primary/secondary amines under anhydrous conditions. The Ni(II) catalysts were activated with ethyl aluminum sesquichloride (EASC) to oligomerize the ethylene mainly into C4, C6, C8, and C10 fractions with activities up to 1.2 and 0.5 × 106 g (mol-Ni)−1 bar−1 h−1 at 30 and 50 °C, respectively. All catalysts were found to be electrochemically active in the working potential range of −2 to +2 V. A change in the potential of Ni(II) was provoked by the N4 donor bridging ligands, increasing the ethylene oligomerization activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号