首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Method for a Constant Loop Bandwidth in LC-VCO PLL Frequency Synthesizers   总被引:3,自引:0,他引:3  
An LC-VCO based phase-locked loop (PLL) frequency synthesizer which incorporates loop bandwidth tracking is described. In order to minimize loop bandwidth variations resulting from changes in the LC-VCO gain, the proposed PLL employs an averaging varactor based split-tuned LC-VCO and a servo loop which sets the charge-pump current to be inversely proportional to the square of the oscillation frequency. The combination of these techniques maintains a constant loop bandwidth over a wide range of operating frequencies. Fabricated in a 0.13$ muhbox{m}$ CMOS technology, the prototype chip measures less than $pm$4% variation in $K_{rm VCO} cdot I_{rm CP} / N$ (equivalent to the variation in PLL loop bandwidth) for an operating frequency range of 3.1 to 3.9 GHz.   相似文献   

2.
Design and implementation of a millimeter-wave dual-band frequency synthesizer, operating in the 24 GHz and 77 GHz bands, are presented. All circuits except the voltage controlled oscillators are shared between the two bands. A multi-functional injection-locked circuit is used after the oscillators to simplify the reconfiguration of the division ratio inside the phase-locked loop. The 1 mm $, times , $0.8 mm synthesizer chip is fabricated in a 0.18 $mu{hbox{m}}$ silicon-germanium BiCMOS technology, featuring 0.15 $mu{hbox{m}}$ emitter-width heterojunction bipolar transistors. Measurements of the prototype demonstrate a locking range of 23.8–26.95 GHz/75.67–78.5 GHz in the 24/77 GHz modes, with a low power consumption of 50/75 mW from a 2.5 V supply. The closed-loop phase noise at 1 MHz offset from the carrier is less than ${- }$ 100$~$dBc/Hz in both bands. The frequency synthesizer is suitable for integration in direct-conversion transceivers for K/W-band automotive radars and heterodyne receivers for 94$~$GHz imaging applications.   相似文献   

3.
In this work an all-digital phase detector for a fractional-${N}$ PLL is proposed and demonstrated. The phase detector consists of a single flip-flop, which acts as an oversampled 1 bit phase quantizer. A digital sampling scheme that enables FSK modulation rates much larger than the loop bandwidth is demonstrated, without compromising on the frequency accuracy of the output signal. A prototype 2.2 GHz fractional-${N}$ synthesizer incorporating the digital phase detector and sampling scheme is presented as a proof of concept. Although the loop bandwidth is only 142 kHz, an FSK modulation rate of 927.5 kbs is achieved. The 0.7 ${hbox{mm}}^{2}$ prototype is implemented in 0.13 $mu{hbox{m}}$ CMOS consumes 14 mW from a 1.4 V supply.   相似文献   

4.
A 5-GHz dual-path integer-$N$ Type-II phase-locked loop (PLL) uses an LC voltage-controlled oscillator and softly switched varactors in an overlapped digitally controlled integral path to allow a large fine-tuning range of approximately 160 MHz while realizing a low susceptibility to noise and spurs by using a low $K_{rm VCO}$ of 3.2 MHz/V. The reference spur level is less than $-$70 dBc with a 1-MHz reference frequency and a total loop-filter capacitance of 26 pF. The measured phase noise is $-$75 and $-$115 dBc/Hz at 10-kHz and 1-MHz offsets, respectively, using a loop bandwidth of approximately 30 kHz. This 0.25-${hbox{mm}}^{2}$ PLL is fabricated in a 90-nm digital CMOS process and consumes 11 mW from a 1.2-V supply.   相似文献   

5.
In this paper, a novel CMOS phase-locked loop (PLL) integrated with an injection-locked frequency multiplier (ILFM) that generates the $V$-band output signal is proposed. Since the proposed ILFM can generate the fifth-order harmonic frequency of the voltage-controlled oscillator (VCO) output, the operational frequency of the VCO can be reduced to only one-fifth of the desired frequency. With the loop gain smaller than unity in the ILFM, the output frequency range of the proposed PLL is from 53.04 to 58.0 GHz. The PLL is designed and fabricated in 0.18-$mu{hbox{m}}$ CMOS technology. The measured phase noises at 1- and 10-MHz offset from the carrier are $-$ 85.2 and $-{hbox{90.9 dBc}}/{hbox{Hz}}$, respectively. The reference spur level of $-{hbox{40.16 dBc}}$ is measured. The dc power dissipation of the fabricated PLL is 35.7 mW under a 1.8-V supply. It can be seen that the advantages of lower power dissipation and similar phase noise can be achieved in the proposed PLL structure. It is suitable for low-power and high-performance $V$-band applications.   相似文献   

6.
A digital intensive PLL featuring a digital filter in parallel with an analog feed-forward path and a digital controlled oscillator (DCO) is presented. Digital loop filter replaces analog passive filter to reduce chip area and associated gate-leakage in advanced process. It also allows the PLL loop gain and DCO gain to be digitally calibrated to within 100 ppm within 50 $mu{hbox{s}}$. Such fine frequency resolution enables the PLL to accurately compensate for the loop parameter variation due to process, voltage and temperature (PVT). The analog feed-forward path is insensitive to quantization error of fractional-N divider and DCO nonlinearity. Direct modulating the DCO frequency and phase through the analog feed-forward path, and compensating the modulating signal digitally for the DCO gain variation are demonstrated. At 3.6 GHz all fractional spurs are under $-$ 75 dBc. The phase noise at 400 kHz and 3 MHz are $-$115.6 dBc/Hz and $-$134.9 dBc/Hz, respectively. The chip is fabricated in a 0.13 $mu$ m CMOS process, and occupies an active area of 0.85 ${hbox{mm}}^{2}$ and draws 40 mA from a 1.5 V supply including all auxiliary circuitry.   相似文献   

7.
A single phase-locked loop (PLL) frequency synthesizer for a Mode-1 multiband orthogonal frequency-division multiplexing (MB-OFDM) ultrawideband (UWB) system is realized in 0.13-$mu hbox{m}$ CMOS. A current-reused multiply-by-1.5 circuit and a multiphase coupled ring oscillator are adopted to reduce the power consumption. For a 4.488-GHz signal, the measured image sideband is $-$40 dBc. The measured switching time from 3.342 to 4.488 GHz is 1.5 ns. The area is $0.85 times 0.9 hbox{mm}^{2}$ and the power is 31.2 mW for a 1.2-V supply voltage.   相似文献   

8.
Recent trends in the development of integrated silicon frequency sources are discussed. Within that context, a 25-MHz self-referenced solid-state frequency source is presented and demonstrated where measured performance makes it suitable for replacement of crystal oscillators (XOs) in data interface applications. The frequency source is referenced to a frequency-trimmed and temperature-compensated 800-MHz free-running $LC$ oscillator (LCO) that is implemented in a standard logic CMOS process and with no specialized analog process options. Mechanisms giving rise to frequency drift in integrated LCOs are discussed and supported by analytical expressions. Design objectives and a compensation technique are presented where several implementation challenges are uncovered. Fabricated in a 0.25-$mu$m 1P5M CMOS process, and with no external components, the prototype frequency source dissipates 59.4 mW while maintaining ${pm} 152$ ppm frequency inaccuracy over process, ${pm} 10hbox{%}$ variation in the power supply voltage, and from ${-}$ 10 $^{circ}$ C to 80 $^{circ}$ C. Variation against other environmental factors is also presented. Nominal period jitter and power-on start-up latency are 2.75 ps$_{rm rms}$ and 268 $mu$s, respectively. These performance metrics are compared with an XO at the same frequency.   相似文献   

9.
Ultra-compact phase shifters are presented. The proposed phase-shifting circuits utilize the lumped element all-pass networks. The transition frequency of the all-pass network, which determines the size of the circuit, is set to be much higher than the operating frequency. This results in a significantly small chip size of the phase shifter. To verify this methodology, 5-bit phase shifters have been fabricated in the $S$ - and $C$ -band. The $S$ -band phase shifter, with a chip size of 1.87 mm $,times,$0.87 mm (1.63 mm $^{2}$), has achieved an insertion loss of ${hbox{6.1 dB}} pm {hbox{0.6 dB}}$ and rms phase-shift error of less than 2.8$^{circ}$ in 10% bandwidth. The $C$ -band phase shifter, with a chip size of 1.72 mm $,times,$0.81 mm (1.37 mm $^{2}$), has demonstrated an insertion loss of 5.7 dB $pm$ 0.8 dB and rms phase-shift error of less than 2.3 $^{circ}$ in 10% bandwidth.   相似文献   

10.
An edge missing compensator (EMC) is proposed to approach the function of an ideal PD with $pm 2 ^{N-1} times 2pi $ linear range with $N$-bit EMC. A PLL implemented with a 9-bit EMC achieves 320 MHz frequency hopping within 10 $~mu{hbox {s}}$ logarithmically which is about 2.4 times faster than the conventional design. The reference spur of the PLL is ${-}{hbox {48.7~dBc}}$ and the phase noise is ${-}hbox{88.31~dBc/Hz}$ at 10 kHz offset with $K_{rm VCO}= -$ 2 GHz/V.   相似文献   

11.
This paper describes a noise filtering method for $Delta Sigma$ fractional- $N$ PLL clock generators to reduce out-of-band phase noise and improve short-term jitter performance. Use of a low-cost ring VCO mandates a wideband PLL design and complicates filtering out high-frequency quantization noise from the $Delta Sigma$ modulator. A hybrid finite impulse response (FIR) filtering technique based on a semidigital approach enables low-OSR $Delta Sigma$ modulation with robust quantization noise reduction despite circuit mismatch and nonlinearity. A prototype 1-GHz $Delta Sigma$ fractional-$N$ PLL is implemented in 0.18 $muhbox{m}$ CMOS. Experimental results show that the proposed semidigital method effectively suppresses the out-of-band quantization noise, resulting in nearly 30% reduction in short-term jitter.   相似文献   

12.
A programmable rational-$K/L$ frequency multiplier that can synthesize any frequency between 25 MHz and 6 GHz from an input clock ranging from 1 to 5.5 GHz is presented. The architecture employs a fractional-$N$ input clock divider followed by a fractional- $N$ PLL. In contrast to conventional architectures, this allows large $K$ and $L$ , whose maximum values are limited only by the word-length of digital $SigmaDelta$ modulators. Additionally, to alleviate large $K_{rm vco}$ variation and fractional spurs, which are inevitable in wide tuning range VCOs and fractional-$N$ synthesizers, new compensation techniques are implemented without involving additional circuitry. This is an ideal solution to support a programmable serializer/deserializer on a field-programmable gate array.   相似文献   

13.
A V-Band CMOS VCO With an Admittance-Transforming Cross-Coupled Pair   总被引:1,自引:0,他引:1  
A novel circuit topology suitable for the implementation of CMOS voltage-controlled oscillators (VCOs) at millimeter-wave frequencies is presented in this paper. By employing transmission line segments to transform the admittance of the additional cross-coupled pair, the proposed LC-tank VCO can sustain fundamental oscillation at a frequency close to the $f _{max}$ of the transistors. Using a standard 0.18 $muhbox{m}$ CMOS process, a V-band VCO is realized for demonstration. The fabricated circuit exhibits a frequency tuning range of 670 MHz in the vicinity of 63 GHz. The measured output power and phase noise at 1 MHz offset are $-hbox{15~dBm}$ and $-hbox{89~dBc}/hbox{Hz}$ , respectively. Operated at a 1.8 $~$V supply voltage, the VCO core and the output buffer consume a total DC current of 55 mA.   相似文献   

14.
An 86–92 GHz frequency shift keying (FSK) transmitter with an integrated antenna in 0.5 $mu{rm m}$ enhancement/depletion-pseudomorphic high-electron mobility transistor (E/D-PHEMT) technology is presented in this letter for broadband millimeter-wave applications. The transmitter consists of a push-push voltage controlled oscillator (VCO) and a slot antenna. The chip size of the transmitter is $2times 1 {rm mm}^{2}$ . The transmitter demonstrates a RF output power of higher than $-$8 dBm over the operation frequency and an antenna gain of 3 dBi with broadside radiation pattern. The transmitter is also successfully evaluated with high speed FSK digital modulations. The dc power consumption of the transmitter is within 54 mW with a dc supply voltage of 2 V.   相似文献   

15.
This paper compares different $DeltaSigma$ modulation techniques for direct digital frequency synthesis (DDS). $DeltaSigma$ modulators such as MASH, feedforward, feedback, and error feedback have been implemented in both the phase and frequency domains in a CMOS DDS prototype IC fabricated in a 0.35-$mu$m CMOS technology with core area of $1.7times 2.1 {hbox {mm}}^{2}$ and total current consumption of 75 mA. Measured DDS performance demonstrates that the frequency domain $DeltaSigma$ modulation technique achieves better output spectrum purity than the phase domain method. Moreover, a programmable feedforward $DeltaSigma$ modulator is proposed to achieve different in-band and out-band noise shaping effects for DDS applications.   相似文献   

16.
This paper presents a single-chip CMOS quad-band (850/900/1800/1900 MHz) RF transceiver for GSM/GPRS/EDGE applications which adopts a direct-conversion receiver, a direct-conversion transmitter and a fractional-N frequency synthesizer with a built-in DCXO. In the GSM mode, the transmitter delivers 4 dBm of output power with 1$^{circ}$ RMS phase error and the measured phase noise is ${-}$164.5 dBc/Hz at 20 MHz offset from a 914.8$~$MHz carrier. In the EDGE mode, the TX RMS EVM is 2.4% with a 0.5 $~$dB gain step for the overall 36 dB dynamic range. The RX NF and IIP3 are 2.7 dB/ ${-}$12 dBm for the low bands (850/900 MHz) and 3 dB/${-}$ 11 dBm for the high bands (1800/1900 MHz). This transceiver is implemented in 0.13 $mu$m CMOS technology and occupies 10.5 mm$^{2}$ . The device consumes 118 mA and 84 mA in TX and RX modes from 2.8 V, respectively and is housed in a 5$,times,$ 5 mm$^{2}$ 40-pin QFN package.   相似文献   

17.
A wide band CMOS LC-tank voltage controlled oscillator (VCO) with small VCO gain $(K_{VCO})$ variation was developed. For small $K_{VCO}$ variation, serial capacitor bank was added to the LC-tank with parallel capacitor array. Implemented in a 0.18 $mu{rm m}$ CMOS RF technology, the proposed VCO can be tuned from 4.39 GHz to 5.26 GHz with the VCO gain variation less than 9.56%. While consuming 3.5 mA from a 1.8 V supply, the VCO has $-$ 113.65 dBc/Hz phase noise at 1 MHz offset from the carrier.   相似文献   

18.
This letter presents the first RF frequency divider on glass to demonstrate the feasibility of system on display (SoD). The frequency divider is developed in 1P2M 3 $mu{rm m}$ low-temperature polycrystalline silicon (LTPS) thin-film transistor technology. The core cell of the LTPS direct injection-locked frequency divider is the single stage ring oscillator. The additional cross-coupled transistor pair increases the phase shift of the ring oscillator to meet the oscillation condition. The maximum locking range of the LTPS frequency divider is 2 MHz, and it can be operated from 120 Hz to 8 MHz with frequency tuning. Operated at 10 V, the frequency divider consumes 1.8 mW of power. The area of the frequency divider circuitry is 2.13$,times,$ 2.6 mm.   相似文献   

19.
We present ultra-low-voltage circuit design techniques for a fractional-N RF synthesizer with two-point modulation which was realized in 90-nm CMOS using only regular ${rm V}_{rm T}$ devices.; the voltage controlled oscillator, phase-frequency detector and charge pump operate from a 0.5 $~$V supply while the divider uses a 0.65$~$V supply. The frequency synthesizer achieves a phase noise better than $-$120 dBc/Hz at 3 MHz, while consuming 6 mW. A calibration technique to equalize the gain between the two modulation ports is introduced and enables phase/frequency modulation beyond the loop bandwidth of the phase-locked loop. Measurement results for 2-Mb/s GFSK modulation are presented.   相似文献   

20.
This brief describes an ultralow-voltage phase-locked loop (PLL) using a bulk-driven technique. The architecture of the proposed PLL employs the bulk-input technique to produce a voltage-controlled oscillator (VCO) and the forward-body-bias scheme to produce a divider. This approach effectively reduces the threshold voltage of the MOSFETs, enabling the PLL to be operated at an ultralow voltage. The chip is fabricated in a 0.13- $muhbox{m}$ standard CMOS process with a 0.5-V power supply voltage. The measurement results demonstrate that this PLL can operate from 360 to 610 MHz with a 0.5-V power supply voltage. At 550 MHz, the measured root-mean-square jitter and peak-to-peak jitter are 8.01 and 56.36 ps, respectively. The total power consumption of the PLL is 1.25 mW, and the active die area of the PLL is 0.04 $hbox{mm}^{2}$.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号