首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
付圣贵  刘晓娟 《中国激光》2008,35(s2):19-21
利用GaAs晶体作为可饱和吸收体, 实现了掺镱光子晶体光纤激光器的被动调Q输出。实验用掺杂光子晶体光纤的芯径为21 μm, 数值孔径为0.04, 在实现了大模场面积的同时, 保证了激光器的单模运转, 从而得到高光束质量的激光输出。实验使用高功率半导体激光器作为抽运源, 采用自行研制的耦合系统将抽运光耦合进入光子晶体光纤的包层中。在激光器平均输出功率为5.8 W时, 实验得到的最短输出激光脉冲为80 ns, 重复频率为6.7 kHz。  相似文献   

2.
利用高频等离子体粉末熔融技术成功制备出镱铝共掺石英玻璃,并对其相关机理和工艺进行研究,解决了镱铝共掺石英玻璃熔点高、难以制备的难题。该技术为拉制大尺寸和多芯掺杂光子晶体光纤提供可能,并可实现多种稀土离子单掺或共掺。通过采用辅助加热和在氧气气氛下熔融,实现了镱铝共掺石英玻璃内气泡的排除,抑制了镱离子的还原。以此玻璃为纤芯利用堆积-拉丝技术拉制的镱铝共掺光子晶体光纤在1200nm波长处的背景损耗值小于0.25dB/m,并且以此光纤为增益介质搭建的激光系统得到了激光输出。测试结果表明该技术制备的镱铝共掺石英玻璃具有非常好的光学特性。  相似文献   

3.
980nm波段的掺镱光纤激光器因有望获得高亮度激光输出,代替980nm波段的半导体激光器成为掺铒/镱光纤激光器高亮度的抽运源而备受关注。从980nm波段光纤激光器广泛使用的4类增益光纤——单模单包层掺镱光纤、常规双包层掺镱光纤、JAC(Jacketed air-clad)掺镱光纤以及超大纤芯掺镱光子晶体光纤出发,对国际上各研究机构所做的工作进行了综述,介绍了其实验进展和存在的问题。最后就980nm波段光纤激光器的未来发展方向进行了探讨。  相似文献   

4.
掺镱大模场光子晶体光纤在高峰值功率超快激光放大器中有着重要的应用价值,其研究得到了广泛关注。首先简要介绍了国内外掺镱大模场光子晶体光纤的研究进展,阐述了掺镱大模场光子晶体光纤的基本设计思路,对比说明了保偏型掺镱光子晶体光纤的设计制备方法。重点介绍了近十年来中国科学院上海光学精密机械研究所在掺镱大模场光子晶体光纤方面的研究进展。包括掺镱大模场光子晶体光纤的纤芯折射率大小和均匀性控制、光子晶体光纤微结构控制等关键技术。采用自主研制的四种芯径为40~100μm的掺镱大模场光子晶体光纤开展了皮秒脉冲激光放大实验。利用40μm芯径的保偏掺镱光子晶体光纤实现了平均功率为100 W、光束质量因子(M2)小于1.4的稳定输出,偏振消光比为12 dB。利用100μm芯径的保偏掺镱大模场光子晶体光纤实现了M2小于1.5的高光束质量脉冲放大。上述研究为掺镱大模场光子晶体光纤的国产化应用奠定了基础。  相似文献   

5.
利用双包层掺镱光子晶体光纤(DC-PCF)作为增益光纤,设计制作了全光纤双包层光子晶体光纤放大器。实验制作了匹配DC-PCF的(6+1)×1端面抽运耦合器,6根抽运光纤采用包层直径、纤芯直径分别为105μm和125μm(数值孔径为0.22)的多模光纤,信号光纤采用普通单模光纤。利用套管法制作端面抽运耦合器,并将制作完成的耦合器与DC-PCF直接熔接,再对光子晶体光纤进行锥棒熔接,锥棒输出端面镀1000~1100nm的增透膜,以防止激光反馈对整个放大系统产生影响。对全光纤双包层光子晶体光纤放大器进行测试,使用976nm的抽运源提供能量,信号光使用波长为1064nm、功率为2 W的连续光。当抽运功率达到最大值151.83 W时,最大输出功率为108.1 W,斜率效率为72.7%。输出光斑为很好的基模光斑,体现了光子晶体光纤在具有大模场面积的同时仍能保持基模传输的优良特性。  相似文献   

6.
孙若愚  刘江  谭方舟  王璞 《激光技术》2013,37(4):417-420
为了得到高单脉冲能量的百皮秒激光脉冲,采用自制的被动锁模掺镱光纤激光器获得了100ps的激光脉冲输出,在此基础上采用两级全光纤结构主振荡功率放大器进行功率放大,其中预放大级采用7m纤芯的双包层掺镱光纤做增益介质,得到平均功率160mW的稳定脉冲输出;主放大级采用20m纤芯的双包层掺镱光纤做增益介质,在抽运功率逐步增加到35.37W时,输出功率达到了16.60W,相应的单脉冲能量为1.63J,峰值功率为16.61kW。此外,主放大级输出的激光通过自制的模场转换器与光子晶体光纤(纤芯4.6m)成功熔接,得到了2.85W的白光超连续光谱,光谱波长覆盖了600nm~1700nm的检测范围。结果表明,此激光可用于超连续谱光源的产生。  相似文献   

7.
王标  庞璐  衣永青  潘蓉  耿鹏程  宁鼎  刘君 《红外与激光工程》2019,48(7):706009-0706009(6)
利用改进的化学气相沉积工艺结合溶液掺杂技术制备了高光束质量的25/400 m双包层掺镱光纤。石英纤芯的掺杂组分为Yb2O3、Al2O3、P2O5,Al2O3有助于降低Yb3+团簇,增加Yb3+掺杂浓度,P2O5起到降低光子暗化效应的作用。纤芯-包层折射率差为0.001 2,纤芯的数值孔径为0.06。976 nm波长处的包层吸收系数为2.1 dB/m。构建双向抽运方式的主控振荡器功率放大器结构对增益光纤性能进行测试。实验中,1 080 nm种子光功率为235 W,在抽运光总功率为3 706 W时,实现了最大功率3 243 W激光输出,斜效率为81.1%,光束质量因子为1.7,未发生受激拉曼散射现象。光纤激光器连续工作1 h,输出功率未见明显变化。采用相同测试方法及平台对25/400 m型号的进口光纤进行测试,对比实验结果表明:实验中制备的双包层掺镱光纤主要性能指标已接近进口光纤。  相似文献   

8.
采用改进化学气相沉积结合溶液掺杂法制造出了掺镱石英光纤预制棒,预制棒轴向上芯径波动小于5%,折射率差波动小于8%。研磨加工后拉制出20/400双包层掺镱光纤,光纤纤芯不圆度为2%,芯包同心度偏差为0.87 μm。双包层掺镱光纤在1095 nm的包层损耗为2.1 dB/km。采用拉制的掺镱双包层光纤作为直接振荡结构全光纤化激光器的增益光纤实现了1195 W的1080 nm激光输出,斜率效率达82%。  相似文献   

9.
为了优化全固态激光的抽运系统,研究抽运系统参数对激光输出特性的影响。以半导体激光端面抽运Nd∶YVO4晶体的全固体激光器设计为例,实验对比了采用不同波长(880 nm和808 nm)和不同光纤芯径(100 μm和200 μm)的半导体激光抽运源对激光输出功率、效率和光束质量等特性参数的影响。结果表明采用880 nm直接抽运技术结合采用小光纤芯径长焦深的抽运系统,可减少斯托克斯光子亏损,实现抽运光模式和激光腔模式的匹配来提高效率和激光输出光束质量。  相似文献   

10.
运用波长与光纤长度关系选择激光波长   总被引:10,自引:1,他引:10  
推导了掺Yb 光纤激光器中激射波长与掺杂光纤长度、掺杂浓度等的关系式。依据所得到的关系式,在981.5 nm 半导体激光抽运的掺Yb 环形腔石英光纤激光器中,获得了中心波长在1053nm 的激光输出。光抽运阈值功率为1.85 m W。激光半功率宽度(FWHM)为5 nm ,输出功率为104μW,斜率效率为3% 。激光空间模式为基横模。  相似文献   

11.
正有源光子晶体光纤的芯径较大,主要用于实现高峰值功率(高能量)的脉冲放大输出。目前只有NKT Photonics公司可提供商品化的掺镱(Yb3+)有源光子晶体光纤,其最大芯径约为85μm。光子晶体光纤的制作主要受光纤预制棒中纤芯尺寸的限制。为实现百微米芯径的光子晶体光纤,预制棒中纤芯材料的直径须达到5mm,目前较难实现。中国科学院上海光学精密机械研究所立足于自身在材  相似文献   

12.
报道了一种新型纳秒脉冲532 nm绿光激光器,其基频光为耗散孤子共振(DSR)方波纳秒脉冲、由掺镱光纤激光器得到,该激光器采用了全光纤主振荡功率放大(MOPA)结构设计。利用非线性偏振旋转(NPR)锁模技术,掺镱光纤激光种子源产生了稳定的DSR方波纳秒脉冲激光输出,输出激光的脉冲宽度随抽运功率的改变在3~40 ns之间可调。利用该DSR方波纳秒脉冲激光作为种子源,经过一级非保偏结构掺镱光纤纤芯放大和两级全保偏结构掺镱光纤包层放大之后,得到了平均功率为6.95 W,峰值功率为4.4 k W的脉冲激光输出。利用长度为20 mm的非线性晶体LBO作为频率转换器,得到了平均功率为2.1 W的绿光激光输出,相应的光光转换效率为30.2%。  相似文献   

13.
姜培培  蔡双双  沈永行  吴波 《中国激光》2008,35(s2):168-171
报道了研制主振-放大(MOPA)结构的高功率保偏掺镱脉冲光纤激光器并用其抽运光参变振荡器(OPO)的研究工作。掺镱脉冲光纤激光器以声光调Q的Nd∶YVO4激光器作为种子源, Liekki的大直径双包层保偏光纤作为放大介质, 得到接近基模的1064 nm波长激光输出, 最大线偏振输出功率17 W, 偏振消光比优于10 dB, 重复频率50 kHz, 脉冲宽度60 ns。利用该光纤激光作为抽运光, 抽运基于周期性畴极化反转掺镁铌酸锂(PPMgLN)晶体的宽带可调谐OPO, 实现了高效参量转换。在信号光1518 nm通道, 以16.2 W功率抽运, 获得最大参变输出功率9 W, 其中3.5 μm波长功率为2.4 W。OPO的能量转换效率为58%, 斜效率为68%。在信号光1491 nm通道, 以14 W功率抽运, 获得最大参变输出6.6 W, 其中3.7 μm波长功率超过2 W。  相似文献   

14.
<正>多芯光子晶体光纤便于与抽运激光器的大模场直径输出尾纤进行低损耗的熔接,能够把高功率的抽运激光耦合进光子晶体光纤中。同时,多芯光子晶体光纤的光场分布直径比单芯光子晶体光纤大,尽管激发非线性效应所需的激光抽运功率会有所提升,但是其激光损伤阈值也随之提升,即能够承受更高功率的抽运激光。因而,多芯光子晶体光纤非常适合用于构建全光纤化的高功率超连续谱光源系统。最近,国防科学技术大学采用高功率皮秒光纤激光抽运由光纤光缆制备技术国家重点实验室拉制  相似文献   

15.
采用的泵浦源是Coherent公司899-29型钛宝石可调谐激光器,在980nm波长处额定功率600mW,激光线宽小于6GHz;用于混合泵浦的1480nm半导体激光器,最大输出功率90mW。信号源为分布反馈半导体激光器,单纵模工作波长1536nm,额定功率3.5mW。所用的国产的掺铒光纤芯径3.27μm、数值孔径0.223、截止波长958.6nm;英制掺铒光纤芯径3.17μm,数值孔径0.22、截止波长910nm、掺铒浓度200ppm;980nm和1480nm混合泵浦用的掺铒光纤芯径4.9μm、数值孔径0.22、截止孔径0.22、截止波长1.4μm、掺铒浓度230ppm;英制铒/镱双掺杂的光纤、掺镱浓度13000ppm。信号光和泵浦光通过光纤波分复用器耦合进掺铒光纤,波分复用器对信号光的耦合率大于99%、对泵浦光直通率大于90%,以硅片上镀介质膜和小棱镜作滤波器和隔离器,用GDS50-15双光栅单色仪,Coherent 212型功率计和AV2491型光纤功率计作探测器。  相似文献   

16.
报道了一个全光纤结构的高功率超连续谱激光光源。利用自行搭建的环形腔掺镱脉冲光纤激光器作为种子源,采用三级MOPA功率放大,得到了平均功率为62W,中心波长为1 065 nm,3 dB谱宽15 nm,重复频率为118 MHz的皮秒锁模脉冲输出,将其耦合进零色散波长为1 040 nm的光子晶体(PCF),最终得到平均功率为28 W,谱宽覆盖范围为600~1 700 nm的超连续谱激光输出,超连续谱的光-光转换效率为45%。实验解决了高功率下大芯径掺杂光纤与PCF的耦合效率低的问题。  相似文献   

17.
报道了基于石墨烯可饱和吸收镜的被动调Q锁模光纤激光器。激光器以大模场双包层掺镱光子晶体光纤为增益介质,采用线形腔结构。在抽运功率12 W时,得到了最高115mW的调Q锁模脉冲输出。输出峰值波长1039nm,光谱的半峰全宽为6nm。对实验结果及现象进行了详细的讨论和分析。  相似文献   

18.
陈立  鲁平  张亮  田铭  赵水  刘德明 《激光技术》2013,37(2):195-197
为了实现高效、全光纤化的2μm激光输出,采用中心波长为1569nm附近的级联双包层铒镱共掺光纤放大器来抽运铥钬共掺单模光纤、1550nm/2000nm波分复用器、光纤耦合器构成的环形腔全光纤激光器。当915nm LD抽运驱动电流为6.9A时,获得的最大输出激光功率为57.23mW,斜率效率约为12%,线宽约为4.5nm,阈值抽运功率约为180mW。结果表明,该光纤激光器性能可靠,其在光纤传感、激光医疗等领域将有巨大应用前景。  相似文献   

19.
利用半导体激光器(LD)抽运大模场增益光纤实现了输出功率大于4kW的主振荡功率放大结构全光纤激光器。实验研究了增益光纤纤芯直径和抽运波长不同情况下激光器的受激拉曼散射(SRS)和横向模式不稳定(TMI)特性。为了抑制SRS,选择纤芯为30μm的大模场掺镱光纤作为增益介质;为了抑制光纤放大器中的TMI,利用增益光纤吸收系数较低波段对应的915nm LD作为抽运源,将增益光纤弯曲半径降低到10cm以提高高阶模的损耗。在种子功率为100 W、最高注入抽运功率为5.3kW时获得了4.1kW的功率输出,光束质量M2为2.2,输出激光中无SRS和TMI现象。  相似文献   

20.
光子晶体光纤的出现,为高功率光纤激光器的关键技术-大模区光纤的实现提供了新途径。基于铒镱共掺磷酸盐材料的包层掺杂新结构出现,为实现更加紧凑的光纤激光器提供了可能。常规高功率光纤激光器中的抽运技术,谐振腔技术和相干组束技术也在不断融入高功率光子晶体光纤激光器。高功率光子晶体光纤激光器的调Q和锁模输出也已经实现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号