首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT) are both encoded by the cholinergic gene locus from which, in the rat, five different species of ChAT mRNA and three different species of VAChT mRNA are produced. So far, discrimination between mRNA subtypes has been possible only in CNS homogenates or in cell cultures. In this study, cardiac neurons were microdissected from frozen sections of rat heart using a u.v. laser and harvested using a micromanipulator. RT-PCR demonstrated the expression of the non-coding R-exon and splicing to R1-type mRNA in the majority of cardiac neurons. The technique presented here is the first to allow subtype analysis of cholinergic locus mRNA species in neurons in situ.  相似文献   

4.
Choline acetyltransferase (ChAT) is a specific phenotypic marker of cholinergic neurons. Previous reports showed that different upstream regions of the ChAT gene are necessary for cell type-specific expression of reporter genes in cholinergic cell lines. The identity of the mouse ChAT promoter region controlling the establishment, maintenance, and plasticity of the cholinergic phenotype in vivo is not known. We characterized a promoter region of the mouse ChAT gene in transgenic mice, using beta-galactosidase (LacZ) as a reporter gene. A 3,402-bp segment from the 5'-untranslated region of the mouse ChAT gene (from -3,356 to +46, +1 being the translation initiation site) was sufficient to direct the expression of LacZ to selected neurons of the nervous system; however, it did not provide complete cholinergic specificity. A larger fragment (6,417 bp, from -6,371 to +46) of this region contains the requisite regulatory elements that restrict expression of the LacZ reporter gene only in cholinergic neurons of transgenic mice. This 6.4-kb DNA fragment encompasses 633 bp of the 5'-flanking region of the mouse vesicular acetylcholine transporter (VAChT), the entire open reading frame of the VAChT gene, contained within the first intron of the ChAT gene, and sequences upstream of the start coding sequences of the ChAT gene. This promoter will allow targeting of specific gene products to cholinergic neurons to evaluate the mechanisms of diseases characterized by dysfunction of cholinergic neurons and will be valuable in design strategies to correct those disorders.  相似文献   

5.
We have previously observed that maternal exposure to lead (Pb) results in a reduction of levels of mRNA coding for cholineacetyltransferase (ChAT) in the septum of developing rat without affecting the dams. Here we report that Pb similarly affects the expression of vesicular acetylcholine transporter (VAChT) mRNA in the rat septum. In close agreement with the time course of ChAT mRNA expression, septal VAChT mRNA levels increased from 30% at postnatal day 7 to 78% and 100% of adult levels at days 14 and 21, respectively. Maternal exposure to 0.2% lead acetate in drinking water from gestational day 16 resulted in an approximately 30% reduction of VAChT in 7 and 21-day-old rat pups without affecting VAChT mRNA levels in the dams. These results indicate a developmental stage-dependent interference by Pb with ChAT/VAChT gene expression in the rat septum.  相似文献   

6.
7.
Previous studies have indicated that neuro-endocrine cells store monoamines and acetylcholine (ACh) in different secretory vesicles, suggesting that the transport proteins responsible for packaging these neurotransmitters sort to distinct vesicular compartments. Molecular cloning has recently demonstrated that the vesicular transporters for monoamines and ACh show strong sequence similarity, and studies of the vesicular monoamine transporters (VMATs) indicate preferential localization to large dense core vesicles (LDCVs) rather than synaptic-like microvesicles (SLMVs) in rat pheochromocytoma PC12 cells. We now report the localization of the closely related vesicular ACh transporter (VAChT). In PC12 cells, VAChT differs from the VMATs by immunofluorescence and fractionates almost exclusively to SLMVs and endosomes by equilibrium sedimentation. Immunoisolation further demonstrates colocalization with synaptophysin on SLMVs as well as other compartments. However, small amounts of VAChT also occur on LDCVs. Thus, VAChT differs in localization from the VMATs, which sort predominantly to LDCVs. In addition, we demonstrate ACh transport activity in stable PC12 transformants overexpressing VAChT. Since previous work has suggested that VAChT expression confers little if any transport activity in non-neural cells, we also determined its localization in transfected CHO fibroblasts. In CHO cells, VAChT localizes to the same endosomal compartment as the VMATs by immunofluorescence, density gradient fractionation, and immunoisolation with an antibody to the transferrin receptor. We have also detected ACh transport activity in the transfected CHO cells, indicating that localization to SLMVs is not required for function. In summary, VAChT differs in localization from the VMATs in PC12 cells but not CHO cells.  相似文献   

8.
The vesicular acetylcholine transporter (VAChT) mediates ACh storage in synaptic vesicles by exchanging cytoplasmic ACh with vesicular protons. This study sought to determine the stoichiometry of exchange by analysis of ligand binding and transport kinetics. The effects of different pH values inside and outside, external ACh concentrations, and electrical potential gradients on ACh transport by vesicles isolated from the electric organ of Torpedo were determined using a pH-jump protocol. The equilibrium binding of a high-affinity analogue of ACh is inhibited by protonation with a pKa of 7.4 +/- 0.3. A two-proton model fits the transport data much better than a one-proton model does, and uptake increases at more positive internal electrical potential, as expected for the two-proton model. Thus, the results support the two-proton model. The transport cycle begins with binding of external ACh to outwardly oriented site 2 (KACho = 20 mM) and protonation of inwardly oriented site 1 (pKa1 = 4.73 +/- 0.05). Loaded VAChT reorients quickly (73 000 min-1) and releases ACh to the inside (KAChi = 44 000 mM) and the proton to the outside. Unloaded, internally oriented site 2 binds a proton (pKa2 = 7.0), after which VAChT reorients (150 +/- 20 min-1) in the rate-limiting step and releases the proton to the outside to complete the cycle. Rate constants for the reverse direction also were estimated. Two protons provide a thermodynamic driving force beyond that utilized in vivo, which suggests that vesicular filling is regulated. Other phenomena related to VAChT, namely the time required to fill synaptic vesicles, the fractional orientation of the ACh binding site toward cytoplasm, orientational lifetimes, and the rate of nonquantal release of ACh from cholinergic nerve terminals, were computer-simulated, and the results are compared with physiological observations.  相似文献   

9.
Neurotransmission depends on the regulated release of chemical transmitter molecules. This requires the packaging of these substances into the specialized secretory vesicles of neurons and neuroendocrine cells, a process mediated by specific vesicular transporters. The family of genes encoding the vesicular transporters for biogenic amines and acetylcholine have recently been cloned. Direct comparison of their transport characteristics and pharmacology provides information about vesicular transport bioenergetics, substrate feature recognition by each transporter, and the role of vesicular amine storage in the mechanism of action of psychopharmacologic and neurotoxic agents. Regulation of vesicular transport activity may affect levels of neurotransmitter available for neurosecretion and be an important site for the regulation of synaptic function. Gene knockout studies have determined vesicular transport function is critical for survival and have enabled further evaluation of the role of vesicular neurotransmitter transporters in behavior and neurotoxicity. Molecular analysis is beginning to reveal the sites involved in vesicular transporter function and the sites that determine substrate specificity. In addition, the molecular basis for the selective targeting of these transporters to specific vesicle populations and the biogenesis of monoaminergic and cholinergic synaptic vesicles are areas of research that are currently being explored. This information provides new insights into the pharmacology and physiology of biogenic amine and acetylcholine vesicular storage in cardiovascular, endocrine, and central nervous system function and has important implications for neurodegenerative disease.  相似文献   

10.
11.
The evolution of multiple male traits in the yellow-browed leaf warbler   总被引:1,自引:0,他引:1  
The peripheral sympathetic and parasympathetic cholinergic innervation was investigated with antibodies directed against the C-terminus of the rat vesicular acetylcholine transporter. Immunohistochemistry for the vesicular acetylcholine transporter resulted in considerably more detailed visualization of cholinergic terminal fields in the peripheral nervous system than reported previously and was well suited to also identify cholinergic perikarya. Vesicular acetylcholine transporter immunoreactivity completely delineated the preganglionic sympathetic terminals in pre- and paravertebral sympathetic ganglia, and in the adrenal medulla as well as postganglionic cholinergic neurons in the paravertebral chain. Cholinergic terminals of sudomotor and vasomotor nerves of skeletal muscle were optimally visualized. Mixed peripheral ganglia, including periprostatic and uterovaginal ganglia, exhibited extensive preganglionic cholinergic innervation of both noradrenergic and cholinergic postganglionic principal neurons which were intermingled in these ganglia. Varicose vesicular acetylcholine transporter-positive fibres and terminals, representing the cranial parasympathetic innervation of the cerebral vasculature, of salivary and lacrimal glands, of the eye, of the respiratory tract and of the upper digestive tract innervated various target structures including seromucous gland epithelium and myoepithelium, respiratory epithelium, and smooth muscle of the tracheobronchial tree. The only macrovascular elements receiving vesicular acetylcholine transporter-positive innervation were the cerebral arteries. The microvasculature throughout the viscera, with the exception of lymphoid tissues, the liver and kidney, received vesicular acetylcholine transporter-positive innervation while the microvasculature of limb and trunk skeletal muscle appeared to be the only relevant somatic target of vesicular acetylcholine transporter innervation. Vesicular acetylcholine transporter immunoreactivity was particularly useful for identification of parasympathetic intrinsic ganglia, and their terminal fields, in heart, uterus, and other peripheral organs receiving parasympathetic innervation. Extensive vesicular acetylcholine transporter-positive terminal fields were apparent in both atrial and ventricular tissues of the heart targeting cardiomyocytes as well as cardiac microvessels. Pericardiac brown adipose tissue was also supplied by vesicular acetylcholine transporter-positive varicose fibres. The enteric ganglia of the myenteric and submucous plexus, their synaptic junctions with circular and longitudinal smooth muscle, and terminal fields of the lamina propria of the stomach and intestine and of the local microvasculature were intensely vesicular acetylcholine transporter positive. Vesicular acetylcholine transporter-positive innervation was delivered to the exocrine and endocrine pancreas originating from vesicular acetylcholine transporter-positive intrapancreatic ganglia. Vesicular acetylcholine transporter immunoreactivity in urogenital organs revealed the patterns of terminal cholinergic fields arising from the sacral parasympathetic innervation of these structures. Components of the cholinergic nervous system in the periphery whose existence has been controversial have been confirmed, and the existence of new components of the cholinergic nervous system has been documented, with vesicular acetylcholine transporter immunohistochemistry. Visualization of vesicular acetylcholine transporter will allow documentation of changes in synaptic patency during development, in disease, and during changes in neurotransmission accompanying injury and dystrophy, in the peripheral nervous system.  相似文献   

12.
Choline acetyltransferase (ChAT) is the enzyme catalyzing the biosynthesis of acetylcholine and is considered to be a phenotypically specific marker for cholinergic neurons. We have examined the distribution of ChAT-expressing neurons in the larval nervous system of Drosophila melanogaster by three different but complementary techniques: in situ hybridization with a cRNA probe to ChAT messenger RNA, immunocytochemistry using a monoclonal anti-ChAT antibody, and X-gal staining of transformed animals carrying a reporter gene composed of 7.4 kb of 5' flanking DNA from the ChAT gene fused to a lacZ reporter gene. All three techniques demonstrated ChAT-expressing neurons in the larval visual system. In embryos, the photoreceptor organ (Bolwig's organ) exhibited strong cRNA hybridization signals. The optic lobe of late third-instar larvae displayed ChAT immunoreactivity in Bolwig's nerve and a neuron close to the insertion site of the optic stalk. This neuron's axon ran in parallel with Bolwig's nerve to the larval optic neuropil. This neuron is likely to be a first-order interneuron of the larval visual system. Expression of the lacZ reporter gene was also detected in Bolwig's organ and the neuron stained by anti-ChAT antibody. Our observations indicate that acetylcholine may be a neurotransmitter in the larval photoreceptor cells as well as in a first-order interneuron in the larval visual system of Drosophila melanogaster.  相似文献   

13.
Rats subjected to a mild to moderate fluid percussion injury exhibit memory deficits that are similar to rats that have received lesions of the septohippocampal system. Because the cholinergic system plays a major role in septohippocampal function, we studied the kinetics of the synthetic enzyme for acetylcholine, choline acetyltransferase (ChAT), at 1 h, 24 h, or 5 days after a fluid percussion injury. Decreases in ChAT activity were found in the dorsal hippocampus (25%), frontal (32%), and temporal (23%) cortices 1 h after injury. In the parietal cortex, a greater than 50% increase in ChAT activity was observed at all time intervals assessed. At 5 days after TBI, there was an 18% increase in ChAT activity in the medial septal area. These data provide evidence that a mild to moderate fluid percussion injury produces changes in the cholinergic system in brain areas related to memory.  相似文献   

14.
The vesicular acetylcholine transporter (VAChT) is responsible for the transport of the neurotransmitter acetylcholine (ACh) into synaptic vesicles using an electrochemical gradient to drive transport. Rat VAChT has a number of aspartate residues within its predicted transmembrane domains (TM) and cytoplasmic loops, which may play important structural or functional roles in acetylcholine transport. In order to identify functional charged residues, site-directed mutagenesis of rVAChT was undertaken. No effect on ACh transport was observed when any of the five aspartate residues in the cytoplasmic loop were converted to asparagine. Similarly, changing Asp-46 (D46N) in TM1 or Asp-255 (D255N) in TM6 had no effect on ACh transport or vesamicol binding. However, replacement of Asp-398 in TM10 with Asn completely eliminated both ACh transport and vesamicol binding. The conservative mutant D398E retained transport activity, but not vesamicol binding, suggesting this residue is critical for transport. Mutation of Asp-193 in TM4 did not affect ACh transport activity; however, vesamicol binding was dramatically reduced. With mutant D425N of TM11 transport activity for ACh was completely blocked, without an effect on vesamicol binding. Activity was not restored in the conservative mutant D425E, suggesting the side chain as well as the negative charge of Asp-425 is important for substrate binding. These mutants, as well as mutant D193N, clearly dissociated ACh binding and transport from vesamicol binding. These data suggest that Asp-398 in TM10 and Asp-425 in TM11 are important for ACh binding and transport, while Asp-193 and Asp-398 in TM4 and TM10, respectively, are involved in vesamicol binding.  相似文献   

15.
Choline acetyltransferase (ChAT), the enzyme which catalyses the biosynthesis of the neurotransmitter acetylcholine, exists in a soluble and membrane-bound form in cholinergic nerve terminals of different animal species. This study was performed on the enzyme present in Drosophila central nervous system. We show that the two forms of the enzyme have the same apparent molecular weight (75 kDa) when analysed by immunoblotting using an antibody we raised against the recombinant enzyme. According to different authors, membrane-bound enzyme might be associated with synaptic vesicles or plasma membrane. Subfractionation of Drosophila head homogenates in linear glycerol gradients showed that ChAT does not associate with synaptic vesicles. Analysis of ChAT activity and immunoreactivity showed that two peaks of ChAT were produced. One peak was present in fractions containing soluble components and the other was associated with rapidly sedimenting membranes containing plasma membranes. ChAT in the first peak was mainly hydrophilic. A large proportion of ChAT associated with rapidly sedimenting membranes was amphiphilic. Further fractionation of these membranes by flotation in sucrose gradients showed that membrane-associated ChAT sedimented in fractions containing plasma membrane marker. Membrane-bound ChAT was neither solubilized nor converted to hydrophilic enzyme after membrane treatment with 1 M hydroxylamine, suggesting that the enzyme is not palmitoylated and therefore not anchored to membrane through thioester-linked long chain fatty acid. Partial solubilization of ChAT present on membranes with urea and carbonate suggests that this form of ChAT is a peripheral membrane protein. Carbonate solubilization of membrane-bound ChAT converted the enzyme from hydrophobic to hydrophilic protein.  相似文献   

16.
Sympathetic ganglia are composed of noradrenergic and cholinergic neurons. The differentiation of cholinergic sympathetic neurons is characterized by the expression of choline acetyltransferase (ChAT) and vasoactive intestinal peptide (VIP), induced in vitro by a subfamily of cytokines, including LIF, CNTF, GPA, OSM and cardiotrophin-1 (CT-1). To interfere with the function of these neuropoietic cytokines in vivo, antisense RNA for gp130, the common signal-transducing receptor subunit for neuropoietic cytokines, was expressed in chick sympathetic neurons, using retroviral vectors. A strong reduction in the number of VIP-expressing cells, but not of cells expressing ChAT or the adrenergic marker tyrosine hydroxylase (TH), was observed. These results reveal a physiological role of neuropoietic cytokines for the control of VIP expression during the development of cholinergic sympathetic neurons.  相似文献   

17.
18.
Acetylcholine neurotransmission is considered to play a critical role in processes underlying behavioural activity, arousal, attention, learning, and memory. These functional attributions have largely been based on pharmacological findings. or data from brain damaged animals, and humans with neurodegenerative diseases, such as Alzheimer's disease. With the introduction of the in vivo microdialysis method it has recently become possible to monitor acetylcholine in the brain of the behaving animal, which allows to investigate its activity in specific behavioural tasks. With respect to learning and memory, one of the most elementary experimental paradigms is that of behavioural habituation, where the decrease of exploratory activity as a function of repeated exposure to the same environment is taken as an index of memory. We have used this paradigm to monitor hippocampal acetylcholine levels by means of in vivo microdialysis in rats, which were exposed to a novel open field and which were re-exposed to it on the following day (10 min each). The results show that exposure of rats to the novel environment led to increased extracellular levels of hippocampal acetylcholine which were positively correlated with exploratory behaviour. These cholinergic activations were larger than those of control animals which were handled like the experimental animals but which were not exposed to the open field. When re-exposing the experimental animals to the same environment, exploratory behaviour, but not cholinergic activation, was decreased. indicating habituation. In the subsequent 10 min, that is, when the animals where back in their home cages, cholinergic activity was still increased. The magnitude of increase was larger after re-exposure than after exposure to the novel open field. Finally, we differentiated the animals into "superior" vs "inferior" learners and found that the "superior" learners showed higher behavioural activation in the novel environment and stronger neurochemical responses, both. in the novel and familiar environment. Our data show that extracellular levels of hippocampal acetylcholine are not only elevated in relation to novelty and behavioural activation. but also during behavioural habituation. Furthermore, an inter-individual variability of cholinergic activation seems to exist which is related to individual differences in behavioural responsiveness to novelty. Such differences in cholinergic activity may be related to other known differences in hippocampal structure and function and may be important for previously reported inter-individual variabilities in sensation-seeking and related mnestic functions.  相似文献   

19.
The concept that galanin (GAL) is cosecreted with acetylcholine (ACh) into the ventral hippocampus is a major component of the current model delineating GAL regulation of the cholinergic memory pathways in the rat. Although GAL-immunoreactivity coexists in 50-70% of cholinergic neurons in the basal forebrain (BF) of colchicine-treated rats, the actual coexistence of these neurotransmitters in the basal state may be lower, because colchicine treatment was recently shown to both induce GAL gene expression and inhibit choline acetyltransferase (ChAT) gene expression in this brain region. We have used single and double in situ hybridization histochemistry to examine the distribution and coexistence of GAL and ChAT mRNAs in the BF of male and female rats. Compared with other forebrain regions, few GAL mRNA-expressing neurons are present within the cholinergic fields of the BF. The greatest number of GAL mRNA-expressing cells in this region are located within the nucleus of the horizontal limb of the diagonal band; but, even in this region, they represent only a small percentage (<20%) of ChAT mRNA-expressing cells. Our results indicate that few cholinergic neurons in the rat BF coexpress GAL mRNA and suggest that, in the basal state, GAL is not widely cosecreted with ACh into hippocampal memory centers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号