首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The consecutive evolution process of single gold nanorods is monitored using atomic force microscopy (AFM). The single-crystal gold nanorods investigated are grown directly on surfaces to which gold seed particles are covalently linked. The growth kinetics for single nanorods is derived from the 3D information recorded by AFM. A better understanding of the seed-mediated growth mechanism may ultimately lead to the direct growth of aligned nanorods on surfaces.  相似文献   

2.
We study the luminescence quantum yield (QY) of single gold nanorods with different aspect ratios and volumes. Compared to gold nanospheres, we observe an increase of QY by about an order of magnitude for particles with a plasmon resonance >650 nm. The observed trend in QY is further confirmed by controlled reshaping of a single gold nanorod to a spherelike shape. Moreover, we identify two spectral components, one around 500 nm originating from a combination of interband transitions and the transverse plasmon and one coinciding with the longitudinal plasmon band. These components are analyzed by correlating scattering and luminescence spectra of single nanorods and performing polarization sensitive measurements. Our study contributes to the understanding of luminescence from gold nanorods. The enhanced QY we report can benefit applications in biological and soft matter studies.  相似文献   

3.
We demonstrate stable three-dimensional (3D) single-beam optical trapping of gold nanoparticles with diameters between 18 and 254 nm. Three-dimensional power spectral analysis reveals that, for nanoparticles with diameters less than 100 nm, the trap stiffness is proportional to the volume of the particle. For larger particles, the trap stiffness still increases with size, however, less steeply. Finally, we provide numbers for the largest forces exertable on gold nanoparticles.  相似文献   

4.
Noble metal nanostructures of different aspect ratios were synthesised and optically characterised at individual nanorod level. Rayleigh scattering spectroscopy/scanning electron microscopy measurements were performed to uniquely correlate optical signatures with nanorod size and shape. Scattering spectra of nanorods were dominated by the intense longitudinal surface plasmon resonance (SPR) band in the near-infrared part of the spectrum. This band was found to be highly shape and size dependent. Droplet evaporation techniques and application of dielectrophoretic forces have been used to organise nanorod dispersions into ordered arrays. Depending on the technique and nanoparticle size used, nanorods were found to form one, two or three dimensional (1D, 2D and 3D) superstructures. Within these superstructures nanorods organised themselves into end-to-end lines (1D), side-to-side fashion (2D) or hexagonal arrangements (3D).  相似文献   

5.
We present the first acoustic vibration measurements of single gold nanorods with well-characterized dimensions and crystal structure. The nanorods have an average size of 90 nm x 30 nm and display two vibration modes, the breathing mode and the extensional mode. Correlation between the dimensions obtained from electron microscope images and the vibrational frequencies of the same particle allows us to determine the elastic moduli for each individual nanorod. Contrary to previous reports on ensembles of gold nanorods, we find that the single particle elastic moduli agree well with bulk values.  相似文献   

6.
7.
In order to elucidate the relationship for third-order nonlinear optical properties of anisotropic metal nanoparticles between the incident laser wavelength and surface plasmon resonance (SPR) wavelength, gold nanorods (GNRs) with a tuned longitudinal SPR mode in frequency were prepared by seed-mediated methods with two different surfactants, cetyltrimethylammonium bromide (CTAB) and benzyldimethylammonium chloride (BDAC). The real and imaginary parts of the third-order nonlinear optical susceptibilities χ(3) were examined by near-infrared (800 nm) femtosecond Z-scan and I-scan techniques for various gold sols with SPR wavelengths of 530 nm (spheres), 800 nm (nanorods) and 1000 nm (nanorods), named as 530GNSs, 800GNRs and 1000GNRs, respectively. All the samples showed intrinsically third-order nonlinear optical refractive responses. However, as for the real part of χ(3) for one particle, 800GNRs whose plasmon peak was tuned to the incident laser wavelength exhibited a Reχ(3) value 45 times stronger than 530GNSs. More interestingly, the imaginary part of χ(3) was more greatly influenced at the tuned SPR wavelength. Here we first demonstrate that 800GNRs showed plasmon-enhanced saturable absorption (SA) due to a longitudinal SPR tuned to the incident laser wavelength.  相似文献   

8.
Holographic optical trapping   总被引:3,自引:0,他引:3  
Holographic optical tweezers use computer-generated holograms to create arbitrary three-dimensional configurations of single-beam optical traps that are useful for capturing, moving, and transforming mesoscopic objects. Through a combination of beam-splitting, mode-forming, and adaptive wavefront correction, holographic traps can exert precisely specified and characterized forces and torques on objects ranging in size from a few nanometers to hundreds of micrometers. Offering nanometer-scale spatial resolution and real-time reconfigurability, holographic optical traps provide unsurpassed access to the microscopic world and have found applications in fundamental research, manufacturing, and materials processing.  相似文献   

9.
Multiplex biosensor using gold nanorods   总被引:4,自引:0,他引:4  
Gold nanorods (GNRs) with different aspect ratios were fabricated through seed-mediated growth and surface activation by alkanethiols for the attachment of antibodies to yield gold nanorod molecular probes (GNrMPs). Multiplex sensing was demonstrated by the distinct response of the plasmon spectra of the GNrMPs to binding events of three targets (goat anti-human IgG1 Fab, rabbit anti-mouse IgG1 Fab, rabbit anti-sheep IgG (H+L)). Plasmonic sensors are highly specific and sensitive and can be used to monitor refractive index changes caused by molecular interactions in their immediate vicinity with potential to achieve single-particle biosensing. This technique can play a key role in developing novel optical biosensors for both in vivo and in vitro detection and single-receptor kinetics.  相似文献   

10.
We present a general strategy to stabilize gold nanorod suspensions with mono- and bifunctional polyethylene glycol (PEG) and to attach a controlled number of nanoparticles or biomolecules. Characterization by gel electrophoresis, transmission electron microscopy (TEM), and optical dark-field microscopy show the specific binding of functionalized nanorods to their target while avoiding nonspecific binding to substrates, matrices, and other particles. Such nanorods are well suited for self-assembly of nanostructures and single-molecule labeling.  相似文献   

11.
Wang Y  Teitel S  Dellago C 《Nano letters》2005,5(11):2174-2178
Molecular dynamic simulations are used to study the structural stability of gold nanorods upon heating. We show that the global stability of the rod is governed by the free energetics of its surface. In particular, an instability of surface facets nucleates a bulk instability that leads to both surface and bulk reorganization of the rod. The surface reorganizes to form new, more stable, {111} facets, while the underlying fcc lattice completely reorients to align with this new surface structure. Rods with predominantly {111} facets remain stable until melting.  相似文献   

12.
We describe optical monitoring of the synthesis of gold nanorods (NRs) based on seed-mediated growth in the presence of the soft surfactant template cetyltrimethyilammonium bromide. To separate NRs from spheres and surfactants we fractionated samples in the density gradient of glycerol. The optical properties of NRs were characterized by extinction and differential light-scattering spectra (at 90 degrees, 450-800 nm) and by the depolarization light-scattering ratio, I(vh)/I(vv), measured at 90 degrees with a helium-neon laser. Theoretical spectra and the I(vh)/I(vv) ratios were calculated by the T-matrix method as applied to randomly oriented NRs, which were modeled by right-circular cylinders with semispherical ends. The simulated data were fitted to experimental observations by use of particle length and width as adjustable parameters, which were close to the data yielded by transmission electron microscopy. The sensitivity of the long-wavelength resonance of NRs to the dielectric surroundings was examined both experimentally and theoretically by comparison of the extinction spectra of NRs in water and in a 25% glycerol solution. Finally, we discuss the application of NR-protein A conjugates to a dot-immunogold assay with the example of biospecific staining of human IgG molecules adsorbed onto small membrane spots.  相似文献   

13.
In this paper, we report that gold nanorods with different aspect ratios are controllably synthesised by a facile modified seed-mediated growth procedure. The growth rate of gold nanorods is lowered by adding H2SO4, and the yield of gold nanorods is improved. Increasing the concentration of AgNO3 yields gold nanorods with different aspect ratios that differed from 1.83 to 5.04. To prevent aggregation of cetyltrimethylammonium bromide (CTAB)-capped gold nanorods and investigate the sensitivity to the solution refractive index, surface modification is carried out. After assembling poly (sodium-p-styrensulfonate) onto the surface of gold nanorods, the samples can disperse well in water and dimethyl sulfoxide. The localised surface plasmon resonance (LSPR) wavelength of the as-prepared gold nanorods redshifts with increasing the refractive index of the solvent and a good linear relationship between LSPR peaks and refractive index is achieved.  相似文献   

14.
A seed mediated approach for the synthesis of anisotropic rod shaped gold nanoparticles in organic media (toluene) is demonstrated. Pre-formed gold nanoparticles stabilized in toluene by 4-hexadecylaniline (HDA) are used as seeds. These when reacted with 1-octadecylamine (ODA) hydrophobised chloroaurate ions in toluene lead to the formation of gold nanorods. ODA or alkylamines of different chain lengths which are the chloroaurate ion phase transfer agent have been found to play a key role in the formation of the nanorods. The gold nanorods that have a five-fold symmetry evolve from multiply twinned particles and are bound at the tips by [1 11] faces and at the sides by [100] faces. The gold nanorods have been shown to grow under the shape directing effect of the alkylamines which stabilize the high energy [100] faces. The concentration of the alkylamines has been found to play a critical role in the formation of the gold nanorods. Higher concentrations of the alkylamines lead to formation of spherical particles, at times of narrow size distribution.  相似文献   

15.
We determine the three-dimensional shape, to within 1 nm resolution, of single-crystal gold nanorods grown in the presence of silver ions using electron tomography and thickness profile measurements. We find that, contrary to the current literature, the octagonal side-facets are sparsely packed atomic planes all belonging to the same symmetry-equivalent family, {0 5 12}. Furthermore, the rod ends terminate in a pyramid with slightly different facets, and each pyramid is connected to the sides by four small {0 5 12} "bridging" facets.  相似文献   

16.
We report the synthesis and optical properties of compact and aligned ZnO nanorod arrays (dia, ∼ 50–200 nm) grown on a glass substrate with varying seed particle density. The suspension of ZnO nanoparticles (size, ∼ 15 nm) of various concentrations are used as seed layer for the growth of nanorod arrays via selfassembly of ZnO from solution. We studied the effect of various growth parameters (such as seeding density, microstructure of the seed layer) as well as the growth time on the growth and alignment of the nanorods. We find that the growth, areal density and alignment of the nanorods depend on the density of seed particles which can be controlled. It is observed that there is a critical density of the seed particles at which nanorod arrays show maximum preferred orientation along [002] direction. The minimum and maximum radius of the aligned nanorods synthesized by this method lie in the range 50–220 nm which depend on the seeding density and time of growth. These nanorods have a bandgap of 3.3 eV as in the case of bulk crystals and show emission in the UV region of the spectrum (∼ 400 nm) due to excitonic recombination and defect related emission in the visible region.  相似文献   

17.
Dielectrophoretic alignment of the Selenium (Se) nanorods is reported for electrical characterization and possible applications as micro/nano devices. Selenium nanorods were successfully synthesized using a reverse microemulsion process. The produced material was investigated structurally using X-ray diffraction and transmission electron microscope. Suspensions of the Se powder in the concentration of 0.1 (g/l) were prepared in pure ethanol. Interdigitated platinum electrodes were employed for manipulation of suspended materials in the fluid. When Se particles were exposed to the platinum electrodes in two frequencies of 10 and 100 kHz, dielectrophoretic force captured suspended particles onto the interdigitated micro-electrode array. The trapped Se nanorods were aligned along the electric field lines and bridged the electrode gaps. Dielectrophoretic entrapment of Se nanorods on microelectrode was also detected by impedance measurements. The device was characterized and can potentially be used as a nanodevice.  相似文献   

18.
Controllable strong interactions between a nanocavity and a single emitter is important to manipulating optical emission in a nanophotonic system but challenging to achieve.Herein a three-dimensional DNA origami,named as DNA rack(DR)is proposed and demonstrated to deterministically and precisely assemble single emitters within ultra-small plasmonic nanocavities formed by closely coupled gold nanorods(AuNRs).Uniquely,the DR is in a saddle shape,with two tubular grooves that geometrically allow a snug fit and linearly align two AuNRs with a bending angle <10°.It also includes a spacer at the saddle point to maintain the gap between AuNRs as small as 2-3 nm,forming a nanocavity estimated to be 20 nm3 and an experimentally measured O factor of 7.3.A DNA docking strand is designed at the spacer to position a single fluorescent emitter at nanometer accuracy within the cavity.Using Cy5 as a model emitter,a -30-fold fluorescence enhancement and a significantly reduced emission lifetime(from 1.6 ns to 670 ps)were experimentally verified,confirming significant emitter-cavity interactions.This DR-templated assembly method is capable of fitting AuNRs of variable length-to-width aspect ratios to form anisotropic nanocavities and deterministically incorporate different single emitters,thus enabling flexible design of both cavity resonance and emission wavelengths to tailor light-matter interactions at nanometer scale.  相似文献   

19.
Photoacoustic signal generation by metal nanoparticles relies on the efficient conversion of light to heat, its transfer to the environment, and the production of pressure transients. In this study we demonstrate that a dielectric shell has a strong influence on the amplitude of the generated photoacoustic signal and that silica-coated gold nanorods of the same optical density are capable of producing about 3-fold higher photoacoustic signals than nanorods without silica coating. Spectrophotometry measurements and finite difference time domain (FDTD) analysis of gold nanorods before and after silica coating showed only an insignificant change of the extinction and absorption cross sections, hence indicating that the enhancement is not attributable to changes in absorption cross section resulting from the silica coating. Several factors including the silica thickness, the gold/silica interface, and the surrounding solvent were varied to investigate their effect on the photoacoustic signal produced from silica-coated gold nanorods. The results suggest that the enhancement is caused by the reduction of the gold interfacial thermal resistance with the solvent due to the silica coating. The strong contrast enhancement in photoacoustic imaging, demonstrated using phantoms with silica-coated nanorods, shows that these hybrid particles acting as "photoacoustic nanoamplifiers" are high efficiency contrast agents for photoacoustic imaging or photoacoustic image-guided therapy.  相似文献   

20.
Bok HM  Shuford KL  Kim S  Kim SK  Park S 《Nano letters》2008,8(8):2265-2270
The paper represents a novel approach to investigating localized surface plasmon (LSP) resonance modes of nanoporous Au nanorods (NRs) in a solution phase with control over surface morphology. Au NRs, which have distinctive features such as nanopores and ligaments, showed interesting LSP resonance modes depending on the surface morphology and the total length of the structure. Compared with the analogous smooth surface NRs, the LSP modes of nanoporous NRs are red-shifted, which can be interpreted as a longer effective rod length and larger amplitude of plasmon oscillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号