首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Au/Sn共晶键合技术在MEMS封装中的应用   总被引:1,自引:0,他引:1  
研究了Au/Sn共晶圆片键合技术在MEMS气密性封装中的应用。设计了共晶键合多层材料的结构和密封环图形,盖帽层采用Ti/Ni/Au/Sn/Au结构,器件层采用Ti/Ni/Au结构,盖帽层腔体尺寸为4.5 mm×4.5 mm×20μm,Au/Sn环的宽度为700μm,优化了键合工艺,对影响气密性的因素(如组分配比、键合前处理和键合温度等)进行了分析。两层硅片在氮气气氛中靠静态的压力实现紧密接触。在峰值温度为300℃、持续时间为2 min的条件下实现了良好的键合效果,其剪切力平均值达到16.663 kg,漏率小于2×10-3 Pa·cm3/s,满足检验标准(GJB548A)的要求,验证了Au/Sn共晶键合技术在MEMS气密封装中的适用性。  相似文献   

2.
为实现硅通孔(TSV)立体集成多层芯片可靠堆叠,对一种具备低温键合且不可逆特点的Cu/Sn等温凝固键合技术进行了研究。基于Cu/Sn系二元合金平衡相图,分析了金属层间低温扩散反应机理,设计了微凸点键合结构并开展了键合工艺实验。通过优化键合工艺参数,获取了性能稳定的金属间化合物(IMC)层,且剪切力键合强度值达到了国家标准,具备良好的热、机械特性。将其应用到多芯片逐层键合工艺实验当中,成功获取了4层堆叠样品,验证了Cu/Sn等温凝固键合技术在TSV立体集成中的应用潜力。  相似文献   

3.
针对石墨烯MEMS压力传感器气密性封装的需求,设计出一种用于石墨烯MEMS压力传感器芯片级Au/Sn共晶键合工艺方法。石墨烯压力传感器芯片键合密封环金属采用50/400 nm的Cr/Au,基板键合密封环金属采用50/400/500/3 nm的Cr/Au/Sn/Au。随后使用倒装焊机在280℃以及8 kN的压力环境下保持6 min,完成芯片与基板的Au/Sn互溶扩散键合工艺,从而实现石墨烯压力传感器芯片的气密性封装。对键合指标进行测试,平均剪切力达20.88 MPa,平均漏率为4.91×10-4 Pa·cm3/s,满足GJB548B-2005的要求。通过比较键合前后的芯片电学特性,石墨烯敏感结电阻平均值变化了1.1%,具有较高的稳定性。此外键合界面能谱测试结果符合Au/Sn键合金属合金元素组分,为石墨烯MEMS压力传感器低成本、高效率气密性封装奠定了基础。  相似文献   

4.
研究了利用Cu/Sn对含硅通孔(TSV)结构的多层芯片堆叠键合技术。采用刻蚀和电镀等工艺,制备出含TSV结构的待键合芯片,采用扫描电子显微镜(SEM)对TSV形貌和填充效果进行了分析。研究了Cu/Sn低温键合机理,对其工艺进行了优化,得到键合温度280℃、键合时间30 s、退火温度260℃和退火时间10 min的最佳工艺条件。最后重点分析了多层堆叠Cu/Sn键合技术,采用能谱仪(EDS)分析确定键合层中Cu和Sn的原子数比例。研究了Cu层和Sn层厚度对堆叠键合过程的影响,获得了10层芯片堆叠键合样品。采用拉力测试仪和四探针法分别测试了键合样品的力学和电学性能,同时进行了高温测试和高温高湿测试,结果表明键合质量满足含TSV结构的三维封装要求。  相似文献   

5.
研究了利用低温等温凝固技术实现Cu-Sn键合在MEMS圆片级封装中的应用.基于Cu-Sn二元平衡相图,对键合层结构进行了设计,同时设计了用于测试的键合图形,并对设计的键合结构进行了流片实验.通过对圆片制作及键合等工艺的一系列优化,在250℃的低温条件下生成了熔点为415℃的金属间化合物,获得了良好的键合层.得到的键合样品剪切力强度值达到了GJB548B-2005标准的要求.研究表明,Cu-Sn等温凝固键合技术具有实际应用的潜力.  相似文献   

6.
曹毓涵  罗乐 《半导体学报》2009,30(8):086001-5
本文提出了一种新颖的基于铜-锡等温键合技术的圆片级气密封装方法。设计了多层焊环结构,并且根据理论计算和实验结果对焊料用量以及键合工艺参数进行了优化。验证实验证明该方法可以成功避免焊料层的氧化,空洞的生成以及贝壳状Cu6Sn5相的生成。利用金相分析、剪切强度和气密性检测对键合质量进行了分析,实验结果表明:优化后的Cu/Sn键合结构具有理想的键合效果,平均剪切力强度为19.5MPa,漏率约为1.9×10-9atm cc/s,达到了MIL-STD-883E表准的要求。  相似文献   

7.
用苯并环丁烯进行圆片级硅–硅气密性键合   总被引:1,自引:0,他引:1  
应用苯并环丁烯(BCB)材料对硅片进行了圆片级低温键合,并研究了其在气密性封装工艺中的应用。测试表明:在250℃的低温键合条件下,封装后样品的气密性优于3.0×10–4Pa.cm3/sHe;剪切力达4.7MPa以上;封装样品合格率达94%以上;通过热循环可靠性测试之后仍具有很好的气密性。BCB是一种较理想的圆片级低温气密性健合封装材料。  相似文献   

8.
MEMS器件封装的低温玻璃浆料键合工艺研究   总被引:1,自引:0,他引:1  
玻璃浆料是一种常用于MEMS器件封装的密封材料.系统研究了MEMS器件在低温下使用玻璃浆料键合硅和玻璃的过程.与大多数MEMS器件采用的玻璃浆料相比(烧结温度400℃以上),此工艺(烧结温度350℃)在键合完成后所形成的封装结构同样具有较高的剪切强度(封装器件剪切强度大于360 kPa),同时具有较好的气密性(合格率达到93.3%),漏率测试结果符合相关标准.结果表明,在保证MEMS器件封装剪切强度和气密性的同时,降低键合温度条件是可以实现的.  相似文献   

9.
管朋  ;展明浩 《电子科技》2014,27(9):175-177
聚合物低温键合技术是MEMS器件圆片级封装的一项关键技术。以苯并环丁烯(BCB)、聚对二甲苯(Parylene)、聚酰亚胺(Polyimide)、有机玻璃(PMMA)作为键合介质,对键合的温度、压力、气氛、强度等工艺参数进行了研究,并分析了其优缺点。通过改变Parylene的旋涂、键合温度、键合压力、键合时间等工艺参数进行了优化实验。结果表明,在230 ℃的低温键合条件下封装后的MEMS器件具有良好的键合强度(>3.600 MPa),可满足MEMS器件圆片级封装要求。  相似文献   

10.
集成化是传感器和微电子机械系统(MEMS)的发展方向,即将传感功能、逻辑电路和驱动功能集成在一块单芯片上。未来的系统芯片将能通过集成的传感器和逻辑电路收集并分析外界数据,将这些数据传输到中央处理器并产生必要的动作或反应。讨论了这种系统集成芯片对于封装和集成的要求,并提出一种能够满足这种要求的低温键合技术。同时这种低温键合技术还具有气密性封装、保留透明窗口等优点。  相似文献   

11.
A chip stack specimen of a three-dimensional (3-D) interconnection structure with Cu vias of 75-μm diameter, 90-μm height, and 150-μm pitch was successfully fabricated using via hole formation with deep reactive ion etching (RIE), Cu via filling with pulse-reverse pulse electroplating, Si thinning, Cu/Sn bump formation, and flip-chip bonding. The contact resistance of a Cu/Sn bump joint and Cu via resistance could be determined from the slope of the daisy chain resistance versus the number of bump joints of the flip-chip specimen containing Cu vias. When the flip chip was bonded at 270°C for 2 min, the contact resistance of a Cu/Sn bump joint of 100-μm diameter was 6.74 mΩ, and the resistance of a Cu via of 75-μm diameter and 90-μm height was 2.31 mΩ. As the power transmission characteristics of the Cu through via, the S21 parameter was measured up to 20 GHz.  相似文献   

12.
The microstructures of the eutectic Au20Sn (wt.%) solder that developed on the Cu and Ni substrates were studied. The Sn/Au/Ni sandwich structure (2.5/3.75/2 μm) and the Sn/Au/Ni sandwich structure (1.83/2.74/5.8 μm) were deposited on Si wafers first. The overall composition of the Au and the Sn layers in these sandwich structures corresponded to the Au20Sn binary eutectic. The microstructures of the Au20Sn solder on the Cu and Ni substrates could be controlled by using different bonding conditions. When the bonding condition was 290°C for 2 min, the microstructure of Au20Sn/Cu and Au20Sn/Ni was a two-phase (Au5Sn and AuSn) eutectic microstructure. When the bonding condition was 240°C for 2 min, the AuSn/Au5Sn/Cu and AuSn/Au5Sn/Ni diffusion couples were subjected to aging at 240°C. The thermal stability of Au20Sn/Ni was better than that of Au20Sn/Cu. Moreover, less Ni was consumed compared to that of Cu. This indicates that Ni is a more effective diffusion barrier material for the Au20Sn solder.  相似文献   

13.
This study examined the thermal stability of an electroless-plated Ni(P) barrier layer inserted between Sn and Cu in the bonding structure of Cu/Sn/Cu for three-dimensional (3D) interconnect applications. A combination of transmission electron microscopy (TEM) and scanning electron microscopy allowed us to fully characterize the bonding morphology of the Cu/Ni(P)/Sn/Ni(P)/Cu joints bonded at various temperatures. The barrier suppressed Cu and Sn interdiffusion very effectively up to 300°C; however, an interfacial reaction between Ni(P) and Sn led to gradual decomposition into Ni3P and Ni3Sn4. Upon 350°C bonding, the interfacial reaction brought about complete disintegration of the barrier in local areas, which allowed unhindered interdiffusion between Cu and Sn.  相似文献   

14.
The objective of this study is to optimize the Cu/Sn solid–liquid interdiffusion process for wafer-level bonding applications. To optimize the temperature profile of the bonding process, the formation of intermetallic compounds (IMCs) which takes place during the bonding process needs to be well understood and characterized. In this study, a simulation model for the development of IMCs and the unreacted remaining Sn thickness as a function of the bonding temperature profile was developed. With this accurate simulation model, we are able to predict the parameters which are critical for bonding process optimization. The initial characterization focuses on a kinetics model of the Cu3Sn thickness growth and the amount of Sn thickness that reacts with Cu to form IMCs. As-plated Cu/Sn samples were annealed using different temperatures (150°C to 300°C) and durations (0 min to 320 min). The kinetics model is then extracted from the measured thickness of IMCs of the annealed samples.  相似文献   

15.
The intermetallic compounds (IMCs) formed during the reflow and aging of Sn3Ag0.5Cu and Sn3Ag0.5Cu0.06Ni0.01Ge solder BGA packages with Au/Ni surface finishes were investigated. After reflow, the thickness of (Cu, Ni, Au)6Sn5 interfacial IMCs in Sn3Ag0.5Cu0.06Ni0.01Ge was similar to that in the Sn3Ag0.5Cu specimen. The interiors of the solder balls in both packages contained Ag3Sn precipitates and brick-shaped AuSn4 IMCs. After aging at 150°C, the growth thickness of the interfacial (Ni, Cu, Au)3Sn4 intermetallic layers and the consumption of the Ni surface-finished layer on Cu the pads in Sn3Ag0.5Cu0.06Ni0.01Ge solder joints were both slightly less than those in Sn3Ag0.5Cu. In addition, a coarsening phenomenon for AuSn4 IMCs could be observed in the solder matrix of Sn3Ag0.5Cu, yet this phenomenon did not occur in the case of Sn3Ag0.5Cu0.06Ni0.01Ge. Ball shear tests revealed that the reflowed Sn3Ag0.5Cu0.06Ni0.01Ge packages possessed bonding strengths similar to those of the Sn3Ag0.5Cu. However, aging treatment caused the ball shear strength in the Sn3Ag0.5Cu packages to degrade more than that in the Sn3Ag0.5Cu0.06Ni0.01Ge packages.  相似文献   

16.
Because of high thermal and electrical conductivity, high melting point, and low cost, bonding by sintering of Cu nanoparticles is promising as a new method to replace the Pb-rich solders currently used in high-temperature applications. However, it is difficult to achieve sufficient strength by using this method because, in the absence of applied pressure, oxidized surfaces inhibit sintering. In this study, we report pressureless bonding of Cu plates with Ni layers by use of Cu and Sn mixed nanoparticles. Bonding was achieved without pressure from 250°C to 350°C in hydrogen by use of pure Cu nanoparticles, and by using mixtures of Cu and Sn nanoparticles in which the amount of Sn varied from 10 to 50 wt.%. The highest strength bonds were obtained by use of Cu–10 wt.% Sn mixed nanoparticles, because the sinterability of the Cu nanoparticles is enhanced by diffusion of Sn into Cu to form an appropriate amount of Cu–Sn intermetallic compounds (IMC) and diminish microvoids. However, when the amount of Sn was greater than 10 wt.%, Cu–Sn IMC were formed to such an extent that the significant reduction of Cu-rich layers led to reduced strength. When the bonding temperature was 350°C, Sn diffused into Cu so much that microvoids were formed in the Sn-rich layer. Because the number of microvoids increased as the amount of Sn was increased, the shear strength could not be enhanced by bonding at higher temperature when the amount of Sn was greater than 30 wt.%.  相似文献   

17.
A reliable composite metal seal comprising both intermetallic compounds (IMC) and solder joints, which are formed by transient liquid phase bonding and soldering respectively, is proposed and demonstrated in wafer level bonding experiments. Hermetic sealing is demonstrated on 8-in. wafers using low volume Cu/Sn materials at process temperatures as low as 280 °C. It is shown that the composite seal is stable when subjected to temperatures of 250 °C, and that it provides better hermeticity and reliability than an IMC seal alone.  相似文献   

18.
A (Pb, Sn)Te thermoelectric element plated with a Ni barrier layer and a Ag reaction layer has been joined with a Cu electrode coated with Ag and Sn thin films using a solid–liquid interdiffusion bonding method. This method allows the interfacial reaction between Ag and Sn such that Ag3Sn intermetallic compounds form at low temperature and are stable at high temperature. In this study, the bonding strength was about 6.6 MPa, and the specimens fractured along the interface between the (Pb, Sn)Te thermoelectric element and the Ni barrier layer. Pre-electroplating a film of Sn with a thickness of about 1 μm on the thermoelectric element and pre-heating at 250°C for 3 min ensures the adhesion between the thermoelectric material and the Ni barrier layer. The bonding strength is thus increased to a maximal value of 12.2 MPa, and most of the fractures occur inside the thermoelectric material. During the bonding process, not only the Ag3Sn intermetallics but also Cu6Sn5 forms at the Ag3Sn/Cu interface, which transforms into Cu3Sn with increases in the bonding temperature or bonding time.  相似文献   

19.
Flip-chip bonding to a Cu lead frame transferred to a fabric was achieved by use of a non-conducting adhesive. Average contact resistance of the flip-chip joints was evaluated on variation of the Cu and Sn thickness of Cu/Sn bumps of size 150 × 220 μm2. The total thickness of the Cu/Sn bumps was fixed at 15 μm. The average contact resistance of the flip-chip joints on the fabric was 5.4–10.8 mΩ, depending on the Sn thickness of the Cu/Sn bumps; this was lower than for flip-chip joints on a rigid Si substrate (15.6–26.5 mΩ). The average contact resistance of flip-chip joints on the fabric decreased from 10.8 mΩ to 5.5 mΩ when the chip–bump configuration was changed from 15-μm-thick Sn to 7-μm-thick Cu/8-μm-thick Sn. The contact resistance of flip-chip joints bonded with the 7-μm-thick Cu/8-μm-thick Sn bumps remained below 10 mΩ for up to 750 h in the 85°C/85% relative humidity test and even decreased to below 4 mΩ in the storage test at 125°C for up to 1000 h.  相似文献   

20.
The feasibility of thermosonic gold wire bonding on Cu coupons with Sn/Cu metallizations was studied by evaluating shear strength and microstructure of balls bonded on different Sn metallization samples. The 0.85 ± 0.08 μm and 5.34 ± 0.21 μm thick metallizations were produced by dipping the Cu coupon in 250°C molten Sn solder for 1 s (sample 1) and 30 s (sample 2), respectively. Cu6Sn5 intermetallic compounds are formed during dipping. After wire bonding, Au-Cu-Sn layers are found on the ball-coupon interface of both samples. The highest ball shear force observed was 40 gf (1 gf = 9.81 mN) and was achieved on sample 1 using 520 mW and 40 gf of ultrasonic power and bonding force, respectively. The shear fracture goes through the Au ball. The Sn is squeezed out of the contact zone during wire bonding and forms flashes that extend 5 μm and 25 μm beyond the contact zone for samples 1 and 2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号