首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A methodology is proposed for the effective integration of photovoltaic (PV) devices into the electric utility distribution network operations. The dispersed PV generator is viewed as an active device used to improve system stability by appropriately modulating the power conditioning unit's output power. Disturbances on the utility system can be damped out by injecting this power into the grid in such a way so that the net effect is a cancellation of undesirable oscillations. The approach is implemented by monitoring the oscillating power and generating control signals which shape accordingly the interface unit's output power. Successful implementation of the scheme relies heavily on the speed and flexibility with which the electronic inverter moves power from the primary source/storage facility to the utility lines. Simulation studies, using the proposed control approach, indicate that application of these policies may result in reduced load following requirements for conventional power generating units, increase the value and acceptability of new energy technologies, and improve power quality and stability of the interconnected system.  相似文献   

2.
分布式光伏发电系统改进虚拟同步发电机控制   总被引:2,自引:0,他引:2  
提出一种计及分布式光伏发电系统源端输出功率波动特征的改进虚拟同步发电机(IVSG)控制策略。对单台虚拟同步发电机功率平衡方程特征值进行分析,明确了光伏电源的基本运行特性,确定了光伏电源稳定运行区域。在传统虚拟同步发电机(VSG)的基础之上进一步采用了直流电压稳定控制技术,提出改进的虚拟同步发电机控制策略。当光伏电源输出功率低于负载需求时起到抑制直流母线电压跌落、维持直流电压稳定的作用,实现按照负荷或并网功率需求进行功率匹配的目的。仿真与实验结果验证了所提控制策略的可行性与有效性。  相似文献   

3.
This work deals with the performances and responses of a grid-connected photovoltaic (PV) plant in normal and disturbed modes. The system is composed of a solar array, a dc–dc converter and a three-phase inverter connected to the utility grid. On the one hand a suitable control of the dc–dc converter is developed in order to extract the maximum amount of power from the PV generator. On the other hand an active and reactive power control approach (PQ) has been presented for the inverter. This method can provide a current with sinusoidal waveform and ensure a high power factor. Therefore, the grid interface inverter transfers the energy drawn from the PV into the grid by ensuring constant dc link voltage. Modeling and controlling were carried out using the informational graph of causality and the macroscopic energy representation methods. The simulation under MATLAB/SIMULINK and the experimental results show the control performance and dynamic behavior of grid-connected PV system in normal and disturbances modes.  相似文献   

4.
A hybrid regenerative power system including photovoltaic (PV) and wind powers and combining the functions of the grid?tie system and uninterruptible power supply (UPS) for critical load applications is presented. The proposed system employs six-arm converter topology with three arms for the rectifier? inverter, one arm for battery charging/discharging and two arms for power conversion of the PV module and wind turbine generator. The operation modes include the grid?tie mode and the UPS mode depending on the grid status. A power balance control scheme is presented, which can reduce the grid power and utilise the regenerative power in the most effective way for fulfilling the two requirements of a three-stage charging of the battery and no interruption of the load. Also, the PV and wind powers can be utilised with priority in order to provide the flexibility for adapting to local circumstances. A single-phase 1.2 kW/110 V system is designed and implemented, and the effectiveness of the proposed system and control methodology are verified with some experimental results.  相似文献   

5.
This paper deals with the analysis and control of a photovoltaic (PV) system connected to the main supply through a Boost converter and shunt active filter supplied by a PV system providing continuous supply of nonlinear load in variation. A robust control of a PV system connected to the grid while feeding a variable nonlinear load is developed and highlighted. This development is based on the control of the Boost converter to extract the maximum power from the PV system using the Perturb and Observe (P and O) algorithm in the presence of temperature and illumination. The proposed modeling and control strategy provide power to the variable nonlinear load and facilitates the transfer of power from solar panel to the grid while improving the quality of energy (harmonic currents compensation, power factor compensation and dc bus voltage regulation). Validation of the developed model and control strategy is conducted using power system simulator Sim-Power System Blockset Matlab/Simulink. To demonstrate the effectiveness of the shunt active filter to load changes, the method of instantaneous power (pq theory) is used to identify harmonic currents. The obtained results show an accurate extraction of harmonic currents and perfect compensation of both reactive power and harmonic currents with a lower THD and in accordance with the IEEE-519 standard.  相似文献   

6.
A photovoltaic (PV) generator is a nonlinear device having insolation-dependent volt-ampere characteristics. Because of its relatively high cost, the system designer is interested in optimum matching of the motor and its mechanical load to the PV generator so that maximum power is obtained during the entire operating period. However, since the maximum-power point varies with solar insolation, it is difficult to achieve an optimum matching that is valid for all insolation levels. In this paper it is shown that for maximum power, the generator current must be directly proportional to insolation. This remarkable property is utilized to achieve insolation-independent optimum matching. A shunt DC motor driving a centrifugal water pump is supplied from a PV generator via a step-up converter whose duty ratio is controlled using a current-locked feedback loop  相似文献   

7.
Hydrogen is regarded as a potential future energy carrier. It can be produced by the electrolysis of water with the required power supplied by a photovoltaic module. The hydrogen in this study was produced using a hydrogen generator with a solid polymer electrolyte. The required power was supplied by a photovoltaic module rated at 3.4 V, 27.45 A. The experimental system was designed and constructed so that the photovoltaic module was directly coupled to the hydrogen generator. The system characteristics: quantity of hydrogen produced, current/voltage output characteristics of the PV module, PV module and H2 generator temperatures were measured and analyzed. A method to design a solar hydrogen energy system, providing the most cost effective hydrogen generation, was developed. In this method, the design point is chosen based on the irradiance during system operation under rated capacity. The data supplied by the experimental system clearly showed the importance of considering the ratio of photovoltaic module cost to hydrogen generator cost when designing an optimum solar hydrogen system.  相似文献   

8.
The Binalood region in Iran enjoys an average wind speed of 6.82 m/s at 40 m elevation and an average daily solar radiation of 4.79 kWh/m2/day. Within this perspective, a remote rural village in Binalood region, called Sheikh Abolhassan, can readily be expected to have more than enough potential for its load demand to be supplied with a stand-alone hybrid renewable energy system. Yet the local state-run electrical service provider extended the utility grid to the village in 2006 to boost the already present diesel generator. This study aims, firstly, to explore how economical it would have been to keep supplying the electricity of the village by the diesel generator and add renewable energy generators to increase the renewable fraction of the system. On a second stage, we tried to investigate how renewable energy sources (RESs) can still be added to the current utility grid power supply in Sheikh Abolhassan to achieve a more economical and environmentally friendly system. The software HOMER is used in this study to evaluate the feasibility of various hybrid diesel-RES and grid-RES energy systems. Findings indicated that the addition of renewable power generators to the system both before and after the grid extension could and still can result in a more economical power system, which is obviously cleaner and more climate-benign.  相似文献   

9.
This paper deals with a real time implementation of a fuzzy logic-based power management of a small scale generation hybrid power system. The system consists of a photovoltaic array and a fuel cell stack, supported by a single-phase grid that supplies a stand-alone AC load. The proposed supervisory algorithm guaranties the system to switch smart between two operation modes, according to the load demand, the gas level and the PV availability. Obviously, the PV side DC–DC converter is controlled to track permanently the maximum power point by using a fuzzy logic MPPT method; whereas, the fuel cell stack and the grid converters are tuned to cover the remaining power, or alternatively, injecting the exceeding power to the utility. Besides, to feed the AC load with a pure sine wave, a Back stepping algorithm is proposed to control the front-end single-phase inverter. To test the effectiveness of the proposed algorithms, experimental results obtained with a given load profile are presented and commented.  相似文献   

10.
A new, utility-interactive hybrid distributed generation scheme, with reactive power compensation feature, is presented. The basic objective is to realize a reliable power supply for a remotely located critical load. Fuel cell (FC) stack and photovoltaic (PV) array are considered as energy sources. These sources can be operated independently or in conjunction as per the requirement. The control logic employed ensures maximum utilization of the PV array, resulting in optimum operational costs. Only one inverter is used to connect both the FC stack and the PV array to the utility. Apart from feeding active power into the grid, the system can also provide reactive power compensation. Active and reactive power can be independently controlled by controlling the inverter's power angle and modulation index, respectively. This provides more flexibility in control and operation. All the details of this work, including power and control circuits, MATLAB simulation results, and experimental results, are presented.  相似文献   

11.
The PV array has unstable output patterns dependent on weather conditions. Therefore, assuming high-density grid connection in the future, these unstable output patterns can be one of the main reasons to cause power disturbances such as the voltage variation, the frequency variation and the harmonic voltage generation into utility. And also it should be considered that a sudden customer load change is one of those reasons. Therefore, this study suggested a PV system with suppression functions against such disturbances in the side of amicable relationship with utility and verified the validity of the proposed system by EMTP and ACSL-based analysis.  相似文献   

12.
Traditional electric power systems are designed in large part to utilize large baseload power plants, with limited ability to rapidly ramp output or reduce output below a certain level. The increase in demand variability created by intermittent sources such as photovoltaic (PV) presents new challenges to increase system flexibility. This paper aims to investigate and emphasize the importance of the grid-connected PV system regarding the intermittent nature of renewable generation, and the characterization of PV generation with regard to grid code compliance. The investigation was conducted to critically review the literature on expected potential problems associated with high penetration levels and islanding prevention methods of grid tied PV. According to the survey, PV grid connection inverters have fairly good performance. They have high conversion efficiency and power factor exceeding 90% for wide operating range, while maintaining current harmonics THD less than 5%. Numerous large-scale projects are currently being commissioned, with more planned for the near future. Prices of both PV and balance of system components (BOS) are decreasing which will lead to further increase in use. The technical requirements from the utility power system side need to be satisfied to ensure the safety of the PV installer and the reliability of the utility grid. Identifying the technical requirements for grid interconnection and solving the interconnect problems such as islanding detection, harmonic distortion requirements and electromagnetic interference are therefore very important issues for widespread application of PV systems. The control circuit also provides sufficient control and protection functions like maximum power tracking, inverter current control and power factor control. Reliability, life span and maintenance needs should be certified through the long-term operation of PV system. Further reduction of cost, size and weight is required for more utilization of PV systems. Using PV inverters with a variable power factor at high penetration levels may increase the number of balanced conditions and subsequently increase the probability of islanding. It is strongly recommended that PV inverters should be operated at unity power factor.  相似文献   

13.
针对光伏发电输出功率具有随机性、可能带来电网运行风险的问题,利用蒙特卡洛模拟法对太阳光辐照度分布区间进行模拟,建立了光伏随机输出模型,对整个系统的设备及光伏电源出力进行随机抽样;结合风险理论,对并网光伏系统随机出力情况下电网的运行风险指标进行了计算。以IEEE-RTS79系统为例,分析了不同光伏并网点和不同并网容量对电网运行风险的影响。结果表明,在负荷较重区域增设光伏并网,可以有效地降低电网运行风险。因此,选择适当的光伏并网点和容量可以降低电网运行风险。  相似文献   

14.
O. U. Oparaku   《Renewable Energy》2003,28(13):2089-2098
A large proportion of the population of Nigeria reside in the rural communities. In this work, the financial costs of providing centralized (photovoltaic) PV generating system of various capacities—to satisfy different load requirements—in a remote village in Nigeria is compared with the cost of grid extension over a distance of 1.8 km. Comparison is also made with the centralised diesel generator power supply option. In addition, the costs of decentralised PV home systems are compared with those of decentralised gasoline generator systems. For all the systems, the initial capital costs and the life cycle costs over a 20-year life cycle are reported. Sensitivity analysis was performed using variations in module costs, diesel fuel prices and grid extension distance. The results suggest that PV has a remarkable potential as a cost-effective option for low-power electrical energy supply to the rural communities in the country.  相似文献   

15.
Maximizing renewables in the country's power system has been a key political agenda in Japan after the Fukushima nuclear disaster. This paper investigates the potential of PV resource, which could be systematically integrated into the Japanese power system, using a high time-resolution optimal power generation mix model. The model allows us to explicitly consider actual PV and wind output variability in 10-min time resolution for 365 days. Simulation results show that, as PV expands, the growth of PV integration into the grid slows down when the installed PV capacity is more than the scale of the peak demand, although Japan has immense potential of installable PV capacity – equivalent to 40 times of the peak. Secondly, the results imply that a large-scale PV integration potentially decreases the usage ratio of LNG combined cycle (LNGCC) in specific seasons, which is a challenge for utility companies to ensure that LNGCC is used as a profitable compensating generator for PV variability. Finally, a sensitivity analysis on rechargeable battery cost suggests that the reason for suppressing the PV output instead of storing its surplus output by the battery can be attributed to the high battery cost; hence, the improvement of its economic performance is significant to integrate the massive PV energy.  相似文献   

16.
For a remote area or an isolated island, where the grid has not extended, a standalone hybrid energy system can provide cheap and adequate power for local users. However, with the development of society, the load demand will increase and the original system cannot completely meet the load demand. This situation occurs in Xiaojin, Sichuan, China. The existing photovoltaic‐pumped hydro storage (PV‐PHS) hybrid system in this area as the original system cannot completely meet the load requirements at present. The term “repowering” aims to maximize the reliability of power supply and the utilization of the PV‐PHS hybrid energy system that differs from traditional planning optimization to build all components. The repowering strategy is to integrate wind turbines (WTs) and battery into the original system. For the repowering system, a power management strategy is proposed to determine the operating modes of the PHS and battery. Three objectives, which are minimizing percentage of the demand not supplied, levelized cost of energy, and curtailment rate of renewable energy, are considered in the optimization model. Simulation is conducted by single‐objective, biobjective, and triobjective particle swarm optimization (PSO) techniques. For the single‐objective optimization, the comparison of PSO and genetic algorithm (GA) is made. For the double‐objective optimization, multiobjective PSO (MOPSO) is compared with weighted sum approach (WSA), and fuzzy satisfying method is utilized to find the win‐win solution. The results reveal that the repowering strategy can help to achieve maximum reliability of power supply after load demand increases significantly, and the battery plays an important role in such a hybrid system.  相似文献   

17.
Single-stage grid-connected photovoltaic (PV) systems have advantages such as simple topology, high efficiency, etc. However, since all the control objectives such as the maximum power point tracking (MPPT), synchronization with the utility voltage, and harmonics reduction for output current need to be considered simultaneously, the complexity of the control scheme is much increased. This paper presents the implementation of a single-stage three-phase grid-connected PV system. In addition to realize the aforementioned control objectives, the proposed control can also remarkably improve the stability of the MPPT method with a modified incremental conductance MPPT method. The reactive power compensation for local load is also realized, so as to alleviate grid burden. A DSP is employed to implement the proposed MPPT controller and reactive power compensation unit. Simulation and experimental results show the high stability and high efficiency of this single-stage three-phase grid-connected PV system.  相似文献   

18.
In this paper, two ways of increasing the integration of wind and solar energy into the electricity grid through energy storage are analyzed. The first service (S1) to the electricity grid is related to a smoothed and hourly scheduled daily production while the second one (S2) concerns a constant and guaranteed minimal production. A power bid, based on meteorological forecasts, is transmitted a day ahead by the producer to the utility grid operator. This leads to a yearly default time rate for which the actual power supplied does not meet the announcement within a given tolerance. The modelling approach developed in this study enables to infer the optimal operation of the system and more specifically the optimal size of the energy storage, aiming at reducing the default time rate (DTR) under 5%. The simulations consider PV or wind with storage systems having discharge time in the range of minutes. Two real test cases are examined: Guadeloupe Island for wind and Reunion Island for PV. The results show that both of the two services can be achieved under specific conditions and that an optimal day-ahead power bid with a 2% DTR is possible with a storage capacity of 1 MWh per installed MWp. In addition, a linear strategy of forecasting this optimal power is highly correlated to the precision of upstream meteorological forecast.  相似文献   

19.
Renewable energy sources have been taken the place of the traditional energy sources and especially rapidly developments of photovoltaic (PV) technology and fuel cell (FC) technology have been put forward these renewable energy sources (RES) in all other RES. PV systems have been started to be used widely in domestic applications connected to electrical grid and grid connected PV power generating systems have become widespread all around the world. On the other hand, fuel cell power generating systems have been used to support the PV generating so hybrid generation systems consist of PV and fuel cell technology are investigated for power generating. In this study, a grid connected fuel cell and PV hybrid power generating system was developed with Matlab Simulink. 160 Wp solar module was developed based on solar module temperature and solar irradiation by using real data sheet of a commercial PV module and then by using these modules 800 Wp PV generator was obtained. Output current and voltage of PV system was used for input of DC/DC boost converter and its output was used for the input of the inverter. PV system was connected to the grid and designed 5 kW solid oxide fuel cell (SOFC) system was used for supporting the DC bus of the hybrid power generating system. All results obtained from the simulated hybrid power system were explained in the paper. Proposed model was designed as modular so designing and simulating grid connected SOFC and PV systems can be developed easily thanks to flexible design.  相似文献   

20.
The integration of significant amounts of renewable-storage hybrid power generation systems to the electric grid poses a unique set of challenges to utilities and system operators. This article deals with the designing methodology of an intelligent control based grid-connected a hybrid system composed of renewable energy source (RES) and storage system (SS). RES is a photovoltaic (PV) source and SS is a process of hydrogen transformation system (H2TS) which composed of alkaline water electrolysis (AWE) for decomposition water by using the PV power, a tank used for gas storage and a proton exchange membrane (PEM) fuel cell (FC) to transform the H2 to the electrical energy. The interconnection of the grid with the power generation system (PGS) is ensured through using a DC/AC hysteresis converter and it can synchronize current with the grid voltage among an independent control of active (P) and reactive (Q) power through a possibility of the Q compensation. In the proposed system, three algorithms are applied; two used inside generation and the third is used inside the grid. Perturb and observe (P&O) maximum power point tracking (MPPT) control algorithm always finds optimal power in the PV generator. A simple cascade controls loop of DC-DC boost converter and operate the FC generator to ensure maximum power and to regulate the DC Bus voltage. In addition, adaptive fuzzy logic control (FLC) unit is developed to control the DC/AC inverter, with adopting an off-line optimization based on genetic algorithms (GAs) applauded for tune different issues as scaling factors of the FLC and PIDs gains of the PV and the H2TS control loops. Simulated results prove a big success of the proposed controls of the grid connected the hybrid PV-H2TS with good performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号