首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combined heating and power (CHP) systems may be considered for installation if they produce savings over conventional systems with separate heating and power. For a CHP system with a natural gas engine as the prime mover, the difference between the price of natural gas and the price of purchased electricity, called spark spread, is an indicator as to whether a CHP system might be considered or not. The objective of this paper is to develop a detailed model, based on the spark spread, that compares the electrical energy and heat energy produced by a CHP system against the same amounts of energy produced by a traditional, or separate heating and power (SHP) system that purchases electricity from the grid. An expression for the spark spread based on the cost of the fuel and some of the CHP system efficiencies is presented in this paper as well as an expression for the payback period for a given capital cost and spark spread. The developed expressions allow determining the required spark spread for a CHP system to produce a net operational savings over the SHP in terms of the performance of system components. Results indicate that the spark spread which might indicate favorable payback varies based on the efficiencies of the CHP system components and the desired payback period. In addition, a new expression for calculating the payback period for a CHP system based on the CHP system capital cost per unit of power output and fuel cost is proposed.  相似文献   

2.
With recent initiatives from the UK government on reduced energy use, energy efficient systems such as combined heat and power (CHP) have been considered for new applications, including supermarkets. In these commercial buildings, the seasonal demand for heat results in underutilisation of the CHP equipment, limiting the primary energy savings that may be achieved. To increase the utilisation time, it has been proposed that heat generated by the CHP unit could be used to power an absorption refrigeration system providing cooling for the refrigerated cabinets. The application of an integrated CHP/absorption scheme or combined cooling heat and power (CCHP) in the supermarket is the subject of this paper.The paper initially describes the cooling/heating/power requirements of a typical supermarket and then reviews a number of CCHP options involving the use of different cooling and engine technologies. The investigation calculates and compares the energy savings/capital costs of the different options against typical conventional supermarket technology.  相似文献   

3.
Combined cooling and heating using a gas engine in a supermarket   总被引:1,自引:0,他引:1  
This paper reports the results of an investigation into the practical and economic viability of an integrated combined heating and cooling system in a supermarket. This system consists of a direct-drive screw compressor, which is powered by a throttle controlled gas engine. The waste heat from the engine is used to provide hot water for space heating and for general usage within the catering and toilet facilities in the supermarket. In this paper, the working principle of the novel system is first described. This details how the gas engine system may be integrated into the typical supermarket. The paper then describes a model, which is used to simulate the energy consumption of the supermarket. This is used to calculate the energy consumed by the conventional system and that used by a number of alternative combined heating and cooling system configurations, which are also described. The additional capital cost of each configuration is estimated and this is used to calculate the payback period. The results show that a payback period of 4.2 years may be achieved with a system that uses approximately 500,000 kWh per annum less primary energy than a conventional system. Finally, comparison between this system and a traditional Combined Heat and Power (CHP) installation is given.  相似文献   

4.
《Applied Thermal Engineering》2000,20(12):1059-1073
In recent years, it has become standard practice to consider combined heat and power (CHP) systems early in the design stage of commercial buildings. With new initiatives from the UK government on reduced energy use, energy efficient systems such as CHP have been considered for a wider application particularly within industrial building design. The viability of CHP in a typical cold storage application is described in this paper. The electrical energy and heating requirements are defined and used to assess the annual energy consumption of a traditional cold storage design using a thermal model. The analysis is then used to consider the economics of different CHP configurations, which includes an integrated CHP and absorption system used to provide chilled glycol for the cold storage facilities. The additional capital cost of each configuration is shown and this is used to calculate the payback period. The results show that an attractive payback period of approximately four years for a combined CHP and absorption system may be achieved.  相似文献   

5.
This paper presents results on the evaluation of energy utilisation efficiency and economic and environmental performance of a micro-gas turbine (MGT) based trigeneration system for supermarket applications. A spreadsheet energy model has been developed for the analysis of trigeneration systems and a 2800 m2 sales area supermarket was selected for the feasibility study. Historical energy demand data were used for the analysis, which considered factors such as the fraction of the heat output used to drive the absorption chillers, the chiller COP and the difference between electricity and gas prices. The results showed that energy and environmental benefits can be obtained from the application of trigeneration systems to supermarkets compared to conventional systems. The payback period of natural gas driven trigeneration systems and greenhouse gas emissions savings will depend on the relative gas and electricity prices and the COP of the vapour compression and absorption systems. It was also shown that operation at full electrical output gives a better performance than a heat load-following strategy due to the reduction of the electrical generation efficiency of the MGT unit at part load conditions.  相似文献   

6.
S. B. Riffat  X. Zhao 《Renewable Energy》2004,29(12):1965-1990
A theoretical analysis has been carried out to investigate the thermodynamic and heat transfer characteristics of a hybrid heat pipe solar collector/CHP system based on the assumption that the system operates on a typical Rankine cycle. Experimental testing of the prototype was also carried out using two types of turbine units. The variation of refrigerant pressures and temperatures, hot water temperatures in the collector and boiler systems, as well as chill water temperatures were recorded. The results were used to estimate the heat from the boiler and the solar collectors, the electricity and hot water generation (indicated as kW energy) from the CHP operation and the gas consumption of the system. The modelling and experimental results were compared for the impulse-reaction turbine system, and a simple analysis of the energy and environmental benefits of the system was carried out. The analysis indicated that the proposed system would save primary energy of approximately 3150 kWh per annum compared to the conventional electricity and heating supply systems, and this would result in reduction in CO2 emission of up to 600 tonnes per annum. The running cost of the proposed system would also be lower than conventional heating/power systems.  相似文献   

7.
This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.  相似文献   

8.
Combined heat and power is the simultaneous production of electricity and heat. CHP plants produce energy in an efficient way. A natural gas CHP system based on an internal combustion engine (ICE) is described, which has been set up at the Building Energy Research Center in Beijing, China. The system is composed of an ICE, a flue gas heat exchanger, a jacket water heat exchanger and other assistant facilities. The ICE generates power on-site, and the exhaust of the ICE is recovered by the flue gas heat exchanger, and the heat of the engine jacket is recovered by the jacket water heat exchanger to district heating system. In order to improve the performance of the system, an absorption heat pump (AHP) is adopted. The exhaust of the ICE drives the AHP to recover the sensible and latent heat step by step, and the temperature of the exhaust could be lowered to below 30 °C. In this paper, the performance of the new system were tested and compared with conventional cogeneration systems. The results show that the new CHP system could increase the heat utilization efficiency 10% compared to conventional systems in winter. All the results could be valuable references for the improvement of the CHP system.  相似文献   

9.
The potential for combined heat and power (CHP) generation in Stockholm is large and a total heat demand of about 10 TWh/year can be met in a renewed large district heating system. This model of the Stockholm district heating system shows that CHP generation can increase from 8% in 2004 to 15.5% of the total electricity generation in Sweden. Increased electricity costs in recent years have awakened an interest to invest in new electricity generation. Since renewable alternatives are favoured by green certificates, bio-fuelled CHP is most profitable at low electricity prices. Since heat demand in the district heating network sets the limit for possible electricity generation, a CHP alternative with a high electricity to heat ratio will be more profitable at when electricity prices are high. The efficient energy use in CHP has the potential to contribute to reductions in carbon dioxide emissions in Europe, when they are required and the European electricity market is working perfectly. The potential in Stockholm exceeds Sweden's undertakings under the Kyoto protocol and national reduction goals.  相似文献   

10.
J.M. Pearce   《Energy》2009,34(11):1947-1954
The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV + CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV-generated electricity and CHP-generated heat. A method to determine the maximum percent of PV-generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV + CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five.  相似文献   

11.
In this paper, the environmental benefits or renewable energy systems are initially presented followed by a study of the thermal performance, economics and environmental protection offered by thermosiphon solar water heating systems. The system investigated is of the domestic size, suitable to satisfy most of the hot water needs of a family of four persons. The results presented in this paper show that considerable percentage of the hot water needs of the family are covered with solar energy. This is expressed as the solar contribution and its annual value is 79%. Additionally, the system investigated give positive and very promising financial characteristics with payback time of 2.7 years and life cycle savings of 2240 € with electricity backup and payback time of 4.5 years and life cycle savings of 1056 € with diesel backup. From the results it can also be shown that by using solar energy considerable amounts of greenhouse polluting gasses are avoided. The saving, compared to a conventional system, is about 70% for electricity or diesel backup. With respect to life cycle assessment of the systems, the energy spent for the manufacture and installation of the solar systems is recouped in about 13 months, whereas the payback time with respect to emissions produced from the embodied energy required for the manufacture and installation of the systems varies from a few months to 3.2 years according to the fuel and the particular pollutant considered. It can therefore be concluded that thermosiphon solar water hearting systems offer significant protection to the environment and should be employed whenever possible in order to achieve a sustainable future.  相似文献   

12.
Energy efficiency and savings strategies in the combustion based industrial process heating has been reviewed comprehensively and presented in this paper. This work compiles latest literatures in terms of thesis, journal articles, conference proceedings, web materials, reports, books, handbooks on industrial process heating systems in the industrial sector. Different types of equipment used (i.e., recuperator, regenerators, heat wheels, heat pipes, economizers, etc.) and energy savings are reviewed in various industrial processes heating. Based on the review results, it is found that significant amounts of energy could be saved by using heat recovery system in the industrial process heating. By using recuperator up to 25% energy can be saved in the furnace. In the case of boiler, by using economizers 10% to 20% energy can be saved. Economic analysis shows that the payback period of recuperator and economizer are normally less than 2 years. It is also found that the payback period is lower when operating hour is comparatively high.  相似文献   

13.
《Energy》2005,30(13):2402-2412
The paper presents the ability of different energy systems and regulation strategies to integrate wind power. The ability is expressed by the following three factors: the degree of electricity excess production caused by fluctuations in wind and Combined Heat and Power (CHP) heat demands, the ability to utilise wind power to reduce CO2 emission in the system, and the ability to benefit from exchange of electricity on the market. Energy systems and regulation strategies are analysed in the range of a wind power input from 0 to 100% of the electricity demand. Based on the Danish energy system, in which 50% of the electricity demand is produced in CHP, a number of future energy systems with CO2 reduction potentials are analysed, i.e. systems with more CHP, systems using electricity for transportation (battery or hydrogen vehicles) and systems with fuel-cell technologies. For the present and such potential future energy systems different regulation strategies have been analysed, i.e. the inclusion of small CHP plants into the regulation task of electricity balancing and ancillary grid stability services and investments in electric heating, heat pumps and heat storage capacity. The results of the analyses make it possible to compare short-term and long-term potentials of different strategies of large-scale integration of wind power.  相似文献   

14.
District heating is an efficient way to provide heat to residential, tertiary and industrial users. Heat is often produced by CHP (combined heat and power) plants, usually designed to provide the base thermal load (40-50% of the maximum load) while the rest is provided by boilers. The use of storage tanks would permit to increase the annual operating hours of CHP: heat can be produced when the request is low (for instance during the night), stored and then used when the request is high. The use of boilers results partially reduced and the thermal load diagram is flattered. Depending on the type of CHP plant this may also affect the electricity generation. All these considerations are crucial in the free electricity market.In this paper, a multi-scale model of storage tanks is proposed. This model is particularly suitable to analyze the operation of storage systems during the heating season and to predict their effects on the primary energy consumption and cash flows. The analysis is conducted considering the Turin district heating system as case study. Results show that primary energy consumption can be reduced up to 12%, while total costs can be reduced up to about 5%.  相似文献   

15.
High efficiency thermoelectric generators (TEG) can recover waste heat from both industrial and private sectors. Thus, the development and deployment of TEG may represent one of the main drives for technological change and fuel substitution. This paper will present an analysis of system efficiency related to the integration of TEG into thermal energy systems, especially Combined Heat and Power production (CHP). Representative implementations of installing TEG in CHP plants to utilize waste heat, wherein electricity can be generated in situ as a by-product, will be described to show advantageous configurations for combustion systems. The feasible deployment of TEG in various CHP plants will be examined in terms of heat source temperature range, influences on CHP power specification and thermal environment, as well as potential benefits. The overall conversion efficiency improvements and economic benefits, together with the environmental impact of this deployment, will then be estimated. By using the Danish thermal energy system as a paradigm, this paper will consider the TEG application to district heating systems and power plants through the EnergyPLAN model, which has been created to design suitable energy strategies for the integration of electricity production into the overall energy system.  相似文献   

16.
Building integrated photovoltaic (BiPV) systems generate electricity, but also heat, which is typically wasted and also reduces the efficiency of generation. A heat recovery unit can be combined with a BiPV system to take advantage of this waste heat, thus providing cogeneration. Two different photovoltaic (PV) cell types were combined with a heat recovery unit and analysed in terms of their life-cycle energy consumption to determine the energy payback period. A net energy analysis of these PV systems has previously been performed, but recent improvements in the data used for this study allow for a more comprehensive assessment of the combined energy used throughout the entire life-cycle of these systems to be performed. Energy payback periods between 4 and 16.5 years were found, depending on the BiPV system. The energy embodied in PV systems is significant, emphasised here due to the innovative use of national average input–output (IO) data to fill gaps in traditional life-cycle inventories, i.e. hybrid analysis. These findings provide an insight into the net energy savings that are possible with a well-designed and managed BiPV system.  相似文献   

17.
Feasibility of cooling, heating, and power systems frequently is based on economic considerations such as energy prices. However, a most adequate feasibility of CHP systems must be based on energy consumption followed by economic considerations. CHP systems designs must yield economical savings, but more importantly must yield real energy savings based on the best energy performance. For CHP systems, energy savings is related to primary energy and not to site energy. This paper presents a mathematical analysis demonstrating that CHP systems increase the site energy consumption (SEC). Increasing the SEC could yield misleading results in the economic feasibility of CHP systems. Three different operation modes are evaluated: (a) cooling, heating, and power; (b) heating and power; and (c) cooling and power, to represent the operation of the system throughout the year. Results show that CHP systems increase site energy consumption; therefore primary energy consumption (PEC) should be used instead of SEC when designing CHP systems.  相似文献   

18.
《Applied Thermal Engineering》2007,27(13):2188-2194
Mediterranean countries show two specific features regarding air-conditioning of buildings: a high—and growing—cooling load and high relative humidity, at least in coastal zones. In this contribution we report on the development of an innovative micro scale tri-generation system (power + heating + cooling), equipped with a rotor based desiccant system adapted to the Mediterranean conditions which receives heat for the desiccant regeneration from a combined heat and power (CHP) cycle.The paper presents the design of the advanced desiccant air handling unit which uses a high efficient combination of a vapor compression chiller working at a high evaporator temperature and a desiccant wheel (silica gel). The electricity of the chiller is supplied by the CHP system and the heat to regenerate the desiccant is the waste heat of the CHP. System simulations have been used to optimize the hydraulic design and the operation strategy in order to minimize operation costs and maximize energy savings. Some new component models, e.g. for the advanced desiccant cycle were developed for this purpose. The final design of the entire system consisting of the CHP system, the vapor compression chiller, the advanced desiccant air handling unit and the load system is described. The load system is composed of an air duct network with induction units and a chilled water network with fan-coils in the office rooms.Regarding energy performance results indicate an electricity saving >30% in comparison to state-of-the-art solutions based on conventional technology.  相似文献   

19.
Heat pumps will continue to make a strong positive contribution to the reduction of carbon dioxide emissions associated with energy production. They are energy efficient under certain conditions and also cost effective (especially when displacing electric heating). It is this problem of cost effectiveness that affects market penetration and limits their use. One method of improving the payback period is by improving the efficiency so as to increase the energy savings, and thus the cost savings. This also has, of course, a positive effect on the environment. This paper examines a number of alternative fluids and systems in an attempt to improve performance of heat pumps for both space heating and industrial processes.  相似文献   

20.
The growing worldwide demand for less polluting shapes of energy have led to a renewed interest in the use of Micro Combined Heat and Power (Micro CHP) technologies in the residential sector. Micro CHP have been introduced around Iran recently, and expected to diffuse more and more.In this paper, technical and economic studies for the use of Micro CHP in the different climate zones of Iran are executed. These zones are categorized in to five; Tehran, Rasht, Bandar Abbas, Ardebil and Yazd, based on weather conditions. Later on using an economic model, both annual energy savings and percentage of system profitability in each zone are calculated as well as reduction in annual emissions. It should be mentioned that, for economic calculations, gas and electricity price are determined using a sensitivity analysis. This analysis indicated that profitability of Micro CHP systems are sensitive to energy prices, as well as hours needed for heating room in each climate zones.The analysis results show that Ardebil with 38 million RLS (with electricity buyback) annual energy saving is recognized as the best option for installing Micro CHP. On the other hand, Bandar Abbas with 2.5 million RLS annual energy saving is not suitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号