首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
为了研究不同时效处理对Al-6Zn-2Mg-2Cu合金性能的影响,研究了强化固溶后T6和T76时效处理对Al-6Zn-2M g-2Cu合金硬度、拉伸性能与晶间腐蚀性能的影响.结果表明,强化固溶后与经过T6时效处理的合金相比,T76时效处理后合金的硬度并无明显变化,但合金的抗拉强度下降了4.39%,伸长率则明显上升.经T6和T76时效处理后,合金的晶间腐蚀等级均为4级.两种时效状态下合金腐蚀速率均在0~1.5 h范围内急剧增大,之后开始下降.经过强化固溶与T76时效处理后,合金的抗晶间腐蚀性能得到明显改善.  相似文献   

2.
采用喷射沉积方法制备了Mg-7Al-1.5Zn-4.5Ca-1Nd合金,通过对沉积态合金不同温度加热处理后试样的组织观察,分析了此合金的相变及组织演变特征。结果表明:喷射沉积坯晶粒细小,组织分布均匀,组织中含有α-Mg、Mg17Al12、MgZn2、Al2Ca和Ca2Mg6Zn3等相;当加热温度从350℃升到520℃时,喷射沉积坯组织有明显的变化,Mg17Al12相溶解,Ca2Mg6Zn3分解为Mg2Ca和MgZn2相,高温时析出了新相Mg12Nd;且硬度随着加热温度的升高而持续下降。  相似文献   

3.
为了提高一种低合金化导线材料Al-0.7Fe-0.4Mg-0.1Si-0.2Er合金的强度和电导率,采用单级时效和双级时效对铸态合金进行改性处理.结果表明:铸态合金的抗拉强度为53 MPa,电阻率为3.12×10-8Ωm;采用固溶+单级时效处理后,合金抗拉强度升高至79.6 MPa,电阻率为3.07×10-8Ωm;采用...  相似文献   

4.
时效对Mg-7Gd-4Y-0.6Zn-0.6Zr合金显微组织及硬度的影响   总被引:1,自引:0,他引:1  
为了提高Mg合金的强韧性和抗高温性能.文中通过显微硬度测试、差示扫描量热仪及透射电镜分析,研究了挤压Mg-7Gd-4Y-0.6Zn-0.6Zr系镁合金的显微硬度及时效析出相的结构.结果表明:钆的添加增强了Mg-Gd-Y合金的时效硬化效果,对合金时效硬化的总体规律无明显影响.透射电镜分析发现具有DO19超点阵的β″和斜方晶体β′相在合金时效硬化阶段析出,提高了合金硬度.在时效后期由于粗大的针片状1β相析出,使合金硬度下降.  相似文献   

5.
为了研究固溶处理对铸态Mg-2Zn-3Y合金组织和性能的影响,采用光学显微镜、X射线衍射仪、扫描电子显微镜、拉伸试验机和维氏硬度计对固溶处理后的合金进行了组织分析及性能测试.结果表明:Mg-2Zn-3Y合金中含有LPSO相和W相,随着固溶温度的升高,块状LPSO相区域逐渐出现层片状形貌,W相发生球化、粗化和重熔现象,合金的抗拉强度、屈服强度、伸长率和硬度均呈现先升高后降低趋势;经450℃固溶12 h后,合金的强化效果最佳,抗拉强度为187 MPa,屈服强度为107 MPa,伸长率为8.0%,硬度为82.5 HV.  相似文献   

6.
介绍了Mg-4Zn-1.5RE合金。实验利用小型轧机对挤压态Mg-4Zn-1.5RE合金进行多道次轧制,研究了轧制后合金板材经不同的退火工艺处理后其显微组织随退火温度和退火时间的变化情况.观察了合金中的第二相的TEM形貌并进行能谱分析。结果表明,该镁合金在常温下可进行多道次轧制,但每两道次之间进行300℃x30min的退火处理,总变形量可达到60%;轧制后的板材经再次退火后发生再结晶,合金中第二相为含有稀土元素的w相。  相似文献   

7.
研究了回归时效时间和回归时效温度对Al-Zn-Mg-Cu RRA合金蠕变变形和性能的影响.通过蠕变试验和单轴拉伸试验研究试样的蠕变应变和力学性能.采用涡流电导率仪测定样品的电导率,采用透射电镜(TEM)观察微组织.结果表明,随着回归时效时间的延长,蠕变应变先增大后减小,在45 min时达到最大值.蠕变应变随回归时效温度...  相似文献   

8.
研究了Sn对经过425℃+24 h的固溶处理与180℃+16 h的时效处理以及挤压态的Mg-3Al-0.5SiO_2-xSn(x=0,1,3,5,7,10)复合材料显微组织和力学性能的影响,并探究了Sn对它们的作用机制。结果表明:由于加入纳米SiO_2粉末,使得材料生成了新的高强高硬尖晶石结构相MgAl_2O_4相,随着Sn含量的增加,第二相经历了如下变化:Mg_2Si→Mg_2(Si_x,Sn_(1-x))→Mg_2Sn,Mg-3Al-0.5SiO_2-xSn复合材料的晶粒细化效果显著,在T4,T6样品中Mg-3Al-0.5SiO_2-7Sn的晶粒尺寸最小。在挤压态样品中,Sn含量的增加会使强度与硬度显著提高,但是伸长率则先上升再降低。在挤压态样品中Mg-3Al-0.5SiO_2-5Sn的晶粒尺寸最小且分布均匀,它的综合力学性能也最高。Sn含量对Mg-3Al-0.5SiO_2-xSn复合材料的断裂机制不会产生显著影响。  相似文献   

9.
本文采用X射线衍射仪、光学显微镜、扫描电镜(附加能谱仪)和电子万能试验机等研究了不同Cu含量Er变质亚共晶Al-10Mg2Si铸造合金的凝固组织和力学性能.结果表明,Cu和Er能显著降低共晶Mg2Si相的晶粒尺寸,从基础合金的15.4μm减小到含1.5 wt.%Cu和0.45 wt.%Er合金的5.8μm,并使其结构从...  相似文献   

10.
本文研究了不同时效工艺对挤压态Al-5.6Zn-1.6Mg-0.05Zr(wt.%)合金的显微组织、腐蚀行为和力学性能的影响.采用光学和电子显微镜揭示了MgZn2析出相的形貌、尺寸及分布随时效温度和时间的变化规律.通过晶间腐蚀(IGC)和剥落腐蚀(EXCO)试验分析了时效后合金的腐蚀敏感性变化情况,发现在经过较长时间时...  相似文献   

11.
为提高挤压态Mg-1.5Zn-0.5Y-0.5Zr合金的耐蚀性能,研究了不同固溶温度对其耐蚀和力学性能的影响,通过微观组织观察、电化学测试、体外浸泡实验、拉伸实验研究了固溶处理后样品的微观组织与性能。结果表明,固溶处理后合金中的W相减少,耐蚀性能提高,但当温度达到550℃时,会进一步造成晶粒粗化,降低了合金的耐蚀性能。合金的强度和塑性随着固溶温度的升高而降低。综合固溶处理后合金的耐蚀和力学性能,推荐500℃为最佳固溶处理温度。  相似文献   

12.
研究了稀上元素对1420铝锂合金在不同时效状态下的力学性能和显微组织的影响,并与不含稀土元素的1420合金进行了比较。结果表明:添加微量稀土元素可以阻碍合金的再结晶,细化再结晶晶粒,并促进δ'相在时效过程中的弥散析出。采用465℃固溶,2%预拉伸变形后经170℃,2~6h时效,可使含微量稀土元素的1420合金获得较好的强度塑性。  相似文献   

13.
为了开发高强度耐热压铸镁合金,采用冷模压铸工艺制备了Mg-8Gd-3Y-0.5Zr(GW83K)合金.通过光学显微镜、扫描电镜、x射线衍射及力学性能测试等手段,分析了压铸态和短时低温固溶处理状态下合金的显微组织及力学性能.结果表明:GW83K合金冷模压铸组织比较均匀,晶粒细小(平均晶粒尺寸为40~50μm),具有优良的高温瞬时力学性能.压铸GW83K合金经低温短时固溶处理(400℃×2h)后,晶粒度变化不大,组织均匀状态未发生变化,只是片层状的共晶体消失,第二相以不连续的棒状或粒状分布于晶界处,室温拉伸力学性能可达到σb=261 .7MPa,σs=240.8MPa,δ5=6%,比压铸态合金分别提高21%,28.4%和30.4%,且高温瞬时性能也得到进一步提高.  相似文献   

14.
为了研究电磁搅拌对Al-18Mg2Si合金组织及性能的影响规律,对Al-18Mg2Si合金进行了不同磁感应强度和搅拌时间的电磁搅拌实验.通过显微组织分析和力学测试表明,提高磁感应强度和延长搅拌时间,合金中的初生Mg2Si相明显圆整、细化;合金的抗拉强度和硬度也有一定程度的提高.但磁感应强度过大,会导致合金组织粗化;搅拌时间过长,会使性能降低.磁感应强度在0.01~0.012T、时间持续60s的电磁搅拌能够显著改善Al-18Mg2Si合金的显微组织和力学性能.  相似文献   

15.
采用拉伸、杯突实验结合DSC分析系统研究了Cu含量对汽车车身用Al-1.0Mg-1.0Si-(0.1-0.7)Cu-0.6Mn合金T4态薄板各类成形性指标及模拟烤漆处理后性能变化的影响规律.结果表明:随着Cu含量增加,T4态合金板材的强度单调增大,n值呈现出略有增大的趋势,延伸率、r值变化规律不明显,IE值单调下降,板材的拉胀成形性能变差;随着Cu含量增加,T4态合金板材烤漆前后的强度均单调增大,但合金板材模拟烤漆后表现出烤漆软化现象,且其软化量随Cu含量增加而逐渐增大,说明Cu含量增加不利于铝板烘烤硬化性能的发挥.  相似文献   

16.
研究了Al-5Ti-0.25 C-8Sr对AM60B镁合金显微组织及性能的影响.结果表明:Al-5Ti-0.25 C-8Sr对AM60B具有良好的细化和变质效果.添加质量分数为0.1%的Al-5Ti-0.25C-8Sr时,α-Mg显著细化,β相由连续或半连续状转变为颗粒状,平均晶粒尺寸由265 μm降低到约78 μm;但当Al-5Ti-0.25C-8Sr加入量大于0.1%时,镁合金晶粒有粗化趋势;AM60B的抗拉强度和显微硬度随着Al-5Ti-0.25C-8Sr添加量的增加先升高后下降,当加入量为0.1%时具有最大值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号