首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Biomass & bioenergy》2000,18(4):341-368
Biomass utilisation for energy production presently faces an uphill battle against fossil fuels. The use of biomass must offer additional benefits to compensate for higher prices: on the basis of a life cycle assessment (using BEAM to evaluate a variety of integrated bioenergy systems in connection with the Sustainable Process Index as a highly aggregated environmental pressure index) it is shown that integrated bioenergy systems are superior to fossil fuel systems in terms of environmental compatibility. The implementation of sustainability measures provides additional valuable information that might help in constructing and optimising integrated bioenergy systems. For a set of reference processes, among them fast pyrolysis, atmospheric gasification, integrated gasification combined cycle (IGCC), combustion and steam cycle (CS) and conventional hydrolysis, a detailed impact assessment is shown. Sensitivity analyses of the most important ecological parameters are calculated, giving an overview of the impacts of various stages in the total life cycle and showing ‘what really matters’. Much of the ecological impact of integrated bioenergy systems is induced by feedstock production. It is mainly the use of fossil fuels in cultivation, harvesting and transportation as well as the use of fertilisers in short-rotation coppice production that impose considerable ecological pressure. Concerning electricity generation the most problematic pressures are due to gaseous emissions, most notably the release of NOx. Moreover, a rather complicated process (high amount of grey energy) and the use of fossil pilot fuel (co-combustion) leads to a rather weak ecological performance in contrast to other 100% biomass-based systems.  相似文献   

2.
During the last years a great effort has been made to reduce pollutant emissions from direct injection (DI) diesel engines. Towards this, engineers have proposed various solutions, one of which is the use of gaseous fuels as a supplement for liquid diesel fuel. These engines, which use conventional diesel fuel and gaseous fuel, are referred to as dual fuel engines. The main aspiration from the usage of dual fuel (liquid and gaseous one) combustion systems is mainly to reduce particulate emissions and nitrogen oxides.One of the gaseous fuels used is natural gas, which has a relatively high auto ignition temperature and moreover is an economical and clean burning fuel. The high auto ignition temperature of natural gas is a serious advantage against other gaseous fuels since the compression ratio of most conventional DI diesel engines can be maintained. Moreover the combustion of natural gas produces practically no particulates since natural gas contains less dissolved impurities (e.g. sulfur compounds).The present contribution is mainly concerned, with an experimental investigation of the characteristics of dual fuel operation when liquid diesel is partially replaced with natural gas under ambient intake temperature in a DI diesel engine. Results are given revealing the effect of liquid fuel percentage replacement by natural gas on engine performance and emissions.  相似文献   

3.
Emissions from a conical FBC fired with a biomass fuel   总被引:1,自引:0,他引:1  
The results of experimental tests conducted on a conical fluidised bed combustor (FBC), firing mixed sawdust of some Thai woods, are discussed. The concentration profiles for major gaseous emissions (CO, NOx and CO2), as well as the temperature and O2 profiles along the combustor height, were obtained for various operating conditions (fuel feed rate and excess air) for three “fixed” bed heights (20, 30 and 40 cm). The influence of fuel quality (through varying the fuel's moisture content) on the formation of gaseous emissions was also studied. Both CO and NOx axial profiles were found to have an extreme (maximum) in the active combustion zone. The effects of FBC load and excess air, as well as fuel moisture, on the COmax were found to be very strong. The NOx,max was less affected by the combustion conditions, approaching 1.5–3 times the NOx values at the combustor outlet. The influence of the sand's bed height on the rate of gaseous emissions was found to be minor. The dependencies of the CO and NOx emissions (i.e. concentrations in the waste flue gas) on the FBC operating conditions are shown for different values of fuel's moisture content.  相似文献   

4.
In the face of global warming and a scarcity of resources, future energy systems are urged to undergo a major and radical transformation. The recognition of the need to embrace renewable energy technologies and to move toward decarbonization has led to significant changes in the German energy generation, consumption and infrastructure. Ambitious German national plans to decrease carbon dioxide emissions on one side, and the unpredictable and volatile nature of renewable energy sources on the other side have elevated the importance of integrated energies in recent years. The deployment of integrated technologies as a solution to interlink various infrastructures creates opportunities for increasing the reliability of energy systems, minimizing environmental impacts and maximizing the share of renewable resources. This paper discusses the role of integrated energy systems in supporting of sustainable solutions for future energy transitions. Moreover, the reinforcement of this movement with the help of different technologies will be discussed and the development of integrated energy systems in Germany will be reviewed.  相似文献   

5.
New power generation technologies are expected to reduce various environmental impacts of providing electricity to urban regions for some investment cost. Determining which power generation technologies are most suitable for meeting the demand of a particular region requires analysis of tradeoffs between costs and environmental impacts. Models simulating different power generation technologies can help quantify these tradeoffs. An Internet‐based modelling infrastructure called DOME (distributed object‐based modelling environment) provides a flexible mechanism to create integrated models from independent simulation models for different power generation technologies. As new technologies appear, corresponding simulation models can readily be added to the integrated model. DOME was used to combine a simulation model for hybrid SOFC (solid oxide fuel cell) and gas turbine system with a power generation capacity and dispatch optimization model. The integrated models were used to evaluate the effectiveness of the system as a centralized power source for meeting the power demand in Japan. Evaluation results indicate that a hybrid system using micro‐tube SOFC may reduce CO2 emissions from power generation in Japan by about 50%. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Sustainable development requires methods and tools to measure and compare the environmental impacts of human activities for various products (goods and services). Providing society with goods and services contributes to a wide range of environmental impacts. Environmental impacts include emissions into the environment and the consumption of resources as well as other interventions such as land use, etc. Life cycle assessment (LCA) is a technique for assessing environmental loads of a product or a system. The aim of this paper is to review existing energy and CO2 life cycle analyses of renewable sources based electricity generation systems.The paper points out that carbon emission from renewable energy (RE) systems are not nil, as is generally assumed while evaluating carbon credits. Further the range of carbon emissions from RE systems have been found out from existing literature and compared with those from fossil fuel based systems, so as to assist in a rational choice of energy supply systems.  相似文献   

7.
Understanding the carbon implications of information and communication technology (ICT) is critical for tackling climate change challenges in the digital era. This paper develops an embodied carbon analysis framework by integrating input-output approaches to explore the extent to which and how ICT drives carbon emissions at the sector level. With the proposed framework, we not only assess the carbon emissions embodied in various ICT subsectors but also reveal the formation and changing mechanism by identifying their source sectors, transfer paths, and economic drivers. Using China as a case study, we find that ICT sector is far from being environment-friendly while considering its embodied carbon impacts, which are dozens of times greater than the direct impacts. This is because ICT sector can induce significant amounts of emissions through its requirement for carbon-intensive intermediate inputs from non-ICT sectors. The electricity sector and basic material sectors (e.g. chemicals, metal, and non-metal) are the most important carbon sources, and are involved in major carbon transfer paths. The fast growth of embodied emissions in ICT sector is driven by the large-scale expansion of final demand for ICT products, although improvements in upstream production efficiency have largely slowed the growth. We suggest that integrated carbon management strategies incorporating mitigation measures for specific sectors, supply chains, and economic drivers are particularly required for addressing ICT-related carbon emission issues.  相似文献   

8.
Many policies to limit greenhouse gas emissions have at their core efforts to put a price on carbon emissions. Carbon pricing impacts households both by raising the cost of carbon intensive products and by changing factor prices. A complete analysis requires taking both effects into account. The impact of carbon pricing is determined by heterogeneity in household spending patterns across income groups as well as heterogeneity in factor income patterns across income groups. It is also affected by precise formulation of the policy (how is the revenue from carbon pricing distributed) as well as the treatment of other government policies (e.g. the treatment of transfer payments). What is often neglected in analyses of policy is the heterogeneity of impacts across households even within income or regional groups. In this paper, we incorporate 15,588 households from the U.S. Consumer and Expenditure Survey data as individual agents in a comparative-static general equilibrium framework. These households are represented within the MIT USREP model, a detailed general equilibrium model of the U.S. economy. In particular, we categorize households by full household income (factor income as well as transfer income) and apply various measures of lifetime income to distinguish households that are temporarily low-income (e.g., retired households drawing down their financial assets) from permanently low-income households. We also provide detailed within-group distributional measures of burden impacts from various policy scenarios.  相似文献   

9.
Electricity generation contributes a large proportion of the total greenhouse gas emissions in the United Kingdom (UK), due to the predominant use of fossil fuel (coal and natural gas) inputs. Indeed, the various power sector technologies [fossil fuel plants with and without carbon capture and storage (CCS), nuclear power stations, and renewable energy technologies (available on a large and small {or domestic} scale)] all involve differing environmental impacts and other risks. Three transition pathways for a more electric future out to 2050 have therefore been evaluated in terms of their life-cycle energy and environmental performance within a broader sustainability framework. An integrated approach is used here to assess the impact of such pathways, employing both energy analysis and environmental life-cycle assessment (LCA), applied on a ‘whole systems’ basis: from ‘cradle-to-gate’. The present study highlights the significance of ‘upstream emissions’, in contrast to power plant operational or ‘stack’ emissions, and their (technological and policy) implications. Upstream environmental burdens arise from the need to expend energy resources in order to deliver, for example, fuel to a power station. They include the energy requirements for extraction, processing/refining, transport, and fabrication, as well as methane leakage that occurs in coal mining activities – a major cotribution – and from natural gas pipelines. The impact of upstream emissions on the carbon performance of various low carbon electricity generators [such as large-scale combined heat and power (CHP) plant and CCS] and the pathways distinguish the present findings from those of other UK analysts. It suggests that CCS is likely to deliver only a 70% reduction in carbon emissions on a whole system basis, in contrast to the normal presumption of a 90% reduction. Similar results applied to other power generators.  相似文献   

10.
This paper sets forth a family of models of light-duty plug-in electric vehicle (PEV) fleets, appropriate for conducting long-term national-level planning studies of the energy and transportation sectors in an integrated manner. Using one of the proposed models, three case studies on the evolution of the U.S. energy and transportation infrastructures are performed, where portfolios of optimum investments over a 40-year horizon are identified, and interdependencies between the two sectors are highlighted. The results indicate that with a gradual but aggressive introduction of PEVs coupled with investments in renewable energy, the total cost from the energy and transportation systems can be reduced by 5%, and that overall emissions from electricity generation and light-duty vehicle (LDV) tailpipes can be reduced by 10% over the 40-year horizon. The annual gasoline consumption from LDVs can be reduced by 66% by the end of the planning horizon, but an additional 800 TWh of annual electricity demand will be introduced. In addition, various scenarios of greenhouse gas (GHG) emissions reductions are investigated. It is found that GHG emissions can be significantly reduced with only a marginal cost increment, by shifting electricity generation from coal to renewable sources.  相似文献   

11.
This study investigates consequences of integrating plug-in hybrid electric vehicles (PHEVs) in a wind-thermal power system supplied by one quarter of wind power and three quarters of thermal generation. Four different PHEV integration strategies, with different impacts on the total electric load profile, have been investigated. The study shows that PHEVs can reduce the CO2-emissions from the power system if actively integrated, whereas a passive approach to PHEV integration (i.e. letting people charge the car at will) is likely to result in an increase in emissions compared to a power system without PHEV load. The reduction in emissions under active PHEV integration strategies is due to a reduction in emissions related to thermal plant start-ups and part load operation. Emissions of the power sector are reduced with up to 4.7% compared to a system without PHEVs, according to the simulations. Allocating this emission reduction to the PHEV electricity consumption only, and assuming that the vehicles in electric mode is about 3 times as energy efficient as standard gasoline operation, total emissions from PHEVs would be less than half the emissions of a standard car, when running in electric mode.  相似文献   

12.
Energy demand and emissions from road transportation vehicles in China   总被引:3,自引:0,他引:3  
Rapidly growing energy demand and emissions from China's road transportation vehicles in the last two decades have raised concerns over oil security, urban air pollution and global warming. This rapid growth will be likely to continue in the next two to three decades as the vehicle ownership level in China is still very low. The current status of China's road transport sector in terms of vehicles, infrastructure, energy use and emissions is presented. Mitigation measures implemented and those that can reasonably be expected to be adopted in the near future are analysed. Recent studies exploring the future trends of road vehicle energy demand and emissions under various strategies are reviewed. Moreover, those studies which assessed various fuel/propulsion options in China from a life cycle perspective are examined to present an overview of the potential for reducing energy use and emissions. Recommendations for further developments are also made. It is concluded that comprehensive and appropriate strategies will be needed to minimise the adverse impacts of China's road vehicles on energy resources and the environment. Fortunately, China appears to be heading in this direction.  相似文献   

13.
There is a need to decrease the detrimental particle and gaseous emissions from residential wood combustion appliances. One encouraging alternative is to stage the air supply which improves the combustion conditions in small appliances. In this study, two types of combustion technologies were studied in conventional masonry heaters (CMH) and modern masonry heaters (MMH). Air staging in the MMHs considerably reduced the particle and gas emissions. The greatest reduction was observed in gaseous and particulate organic emissions. Methane emissions were reduced by 74%–91% and carbon monoxide by 26%–81%. The reduction of fine particle mass (PM1) was 14%–58%. Elemental carbon (EC, i.e. soot) emission increased in small combustion appliances but declined in large appliances. In addition, dust (TSP, Total Suspended Particulate matter i.e. Dust) emissions from hot flue gas were compared with the fine particle mass emissions from diluted sample. PM1 emissions measured from diluted flue gas were 1.1–4.4-fold as compared to TSP collected from hot flue gas. This may be attributable to the fact that organic vapors partially had penetrated into the TSP filter in a gaseous form whereas when they were diluted, semivolatile species condensed on the particles. It can be concluded that air staging is an effective way to reduce gaseous and organic emissions from batch combustion appliances. Particle emission measured from diluted flue gas represents a more realistic results than TSP (hot sampling), because in dilution, also the organic fraction of the particle emissions is taken into account.  相似文献   

14.
The potential of biofuels contributing to the UK emission reduction targets in the formulated UK Low Carbon Transition Plan (LCTP) and the UK’s obligation in the wider EU emissions reduction targets are assessed using four scenarios. The scenarios were evaluated using hybrid lifecycle assessment developed in a multi-regional input–output (MRIO) framework. In the hybrid MRIO LCA framework, technology-specific processes in the biofuels and fossil fuels LCA systems are integrated into a generalised 2-region (UK and Rest of the World) environmental-economic input–output framework in order to account for economy-wide indirect GHG emissions in the biofuels and fossil fuels LCA systems in addition to other indirect impacts such as indirect land use change. The lifecycle greenhouse gas emissions of biodiesel (soybean, palm, rape, waste cooking oil) and bio-ethanol (sugarcane, sugarbeet, corn) were assessed and compared to fossil fuel (diesel and petrol) baseline. From one of the scenarios, biodiesel production from waste cooking oil and bioethanol from sugarbeet offer the biggest potential for emissions savings relative to fossil fuel equivalent and offering a maximum emission savings of 4.1% observed with a biofuel market share of 10% reached in 2020. It was also established that under current biofuel feedstock mix, to achieve the 6% emissions saving primarily from biofuels as proposed in the LCTP, 23.8% of the transport fuels market would be required to be held by biofuels by 2020.  相似文献   

15.
《能源学会志》2020,93(1):198-209
Nowadays, biomass increasingly replaces fossil fuels for domestic heating production. But this leads to gaseous and particulate pollutant emissions. Wood washing is a process which can be applied to reduce such emissions. In the present study, the impact of this process on the extraction of mineral and organic compounds from wood sawdust from three different species (beech, fir and oak) was analyzed, as well as the influence on the wood thermal reactivity. Wood washing leads to a decrease in several ionic elements such as potassium and sodium, which can be largely removed from biomass. Globally, mineral extracts range between 17 and 40% of the initial mass depending of the particle size (ships or sawdust) and of the specie (beech, fir and oak). Moreover, 2% of wood extractives can also be removed from wood. The impacts of wood granulometry, wood drying and washing temperature have been studied to understand the different extraction processes. Wood demineralization has been modelled through pseudo first- and second-order models to derive kinetic parameters of ionic exchanges between water and wood. The pseudo first-order model gives poor results. The second-order model show rapid exchanges with half time reactions approximately equal to 23, 24 and 40 min for beech, fir and oak samples, respectively, washed during a week.  相似文献   

16.
With the increasing concern regarding diesel vehicle emissions and the rising cost of the liquid diesel fuel as well, more conventional diesel engines internationally are pursuing the option of converting to use natural gas as a supplement for the conventional diesel fuel (dual fuel natural gas/diesel engines). The most common natural gas/diesel operating mode is referred to as the pilot ignited natural gas diesel engine (PINGDE) where most of the engine power output is provided by the gaseous fuel while a pilot amount of the liquid diesel fuel injected near the end of the compression stroke is used only as an ignition source of the gaseous fuel–air mixture. The specific engine operating mode, in comparison with conventional diesel fuel operation, suffers from low brake engine efficiency and high carbon monoxide (CO) emissions. In order to be examined the effect of increased air inlet temperature combined with increased pilot fuel quantity on performance and exhaust emissions of a PINGD engine, a theoretical investigation has been conducted by applying a comprehensive two-zone phenomenological model on a high-speed, pilot ignited, natural gas diesel engine located at the authors' laboratory. The main objectives of the present work are to record the variation of the relative impact each one of the above mentioned parameters has on performance and exhaust emissions and also to reveal the advantages and disadvantages each one of the proposed method. It becomes more necessary at high engine load conditions where the simultaneous increase of the specific engine parameters may lead to undesirable results with nitric oxide emissions.  相似文献   

17.
The crude oil graduate depletion, as well as aspects related to environmental pollution and global warming instigated many researches concerning alternative fuels. Natural gas (NG) is one of the most attractive available fuels. A promising technique for its use in internal combustion engines is the dual fuel concept. One of the main problems with this technique is that, at low loads, the engine efficiency decreases compared to conventional diesel. The unburned hydrocarbons and carbon monoxide emissions are also higher in dual fuel mode. An effective method to compensate the demerits of limited lean-burn ability and slow burning velocity of NG is to mix it with a fuel that possesses wide flammability limit and fast burning velocity. Hydrogen (H2) is thought to be the best gaseous candidate for natural gas.In the present work, NG enrichment with various H2 blends is investigated as a technique for improving dual fuel mode, especially at low loads. Impact on engine performance and emissions is experimentally examined. Total BSFC is considerably reduced. An important benefit in terms of BTE, reaching to increase a 12% with the 10%H2 blend compared to the pure NG case, is also achieved. THC and CO emissions are in general reduced as a result of the improvement of gaseous fuel utilization. CO2 emissions are also in general reduced. Even though a slight increase is in overall observed for NOx emissions, it's almost insignificant.  相似文献   

18.
According to the latest waste-to-energy concept, the corporate operators of urban heating systems (UHS) in European Union (EU) should replace fossil fuels by incineration of mixed municipal solid waste (MMSW, following 2008/98/EC Waste Framework Directive that implements mandatory waste separation system for at least paper, plastic, glass, and metal packaging since 31 of December 2014). However, there are indications that MMSW incineration will be counterproductive to the existing Directive on reducing national emissions of certain atmospheric pollutants. Material flow analysis for comparing the environmental impacts of the incineration of lignite, natural gas, and waste in UHS was carried out on a commercial scale. Results showed that replacing lignite by MMSW can lead to an increase in emissions of nitrogen oxides and other negative environmental impacts. However, it is proposed that co-combustion MMSW with natural gas could be a better alternative.  相似文献   

19.
This paper applies a panel of 28 provinces of China from 1996 to 2012 to study the impacts of economic development, energy consumption, trade openness, and urbanization on the carbon dioxide, waste water, and waste solid emissions. By estimating a dynamic panel model with the system Generalized Method of Moments (GMM) estimator and an autoregressive distributed lag (ARDL) model with alternative panel estimators, respectively, we find that the Environmental Kuznets Curve (EKC) hypothesis is well supported for all three major pollutant emissions in China across different models and estimation methods. Our study also confirms positive effects of energy consumption on various pollutant emissions. In addition, we find some evidence that trade and urbanization may deteriorate environmental quality in the long run, albeit not in the short run. From policy perspective, our estimation results bode well for Chinese government's goal of capping greenhouse emissions by 2030 as outlined in the recent China-US climate accord, while containing energy consumption and harm effects from expanding trade and urbanization remains some environmental challenges that China faces.  相似文献   

20.
One of the policy goals motivating programs to increase renewable energy investment is that renewable electric generation will help reduce emissions of CO2 as well as emissions of conventional pollutants (e.g., SO2 and NOx). As a policy instrument, Renewable Portfolio Standards (RPS) encourage investments in wind, solar and other generation sources with the goal of reducing air emissions from electricity production. Increased electricity production from wind turbines is expected to displace electricity production from fossil-fired plants, thus reducing overall system emissions. We analyze the emissions impacts of incremental investments in utility-scale wind power, on the order of 1 GW beyond RPS goals, in the Western United States using a utility-scale generation dispatch model that incorporates the impacts of transmission constraints. We find that wind investment in some locations leads to slight increases in overall emissions of CO2, SO2 and NOx. The location of wind farms influences the environmental impact by changing the utilization of transmission assets, which affects the overall utilization of power generation sources and thus system-level emissions. Our results suggest that renewable energy policy beyond RPS targets should be carefully crafted to ensure consistency with environmental goals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号