首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A combinatorial library containing 645 different compositions was synthesised and characterised for methanol tolerant oxygen electro‐reduction reaction (ORR) catalytic performance. The library was composed of compositions involving between 1 and 4 metals among Pt, Ru, Fe, Mo and Se. In an optical screening test, Pt(50)Ru(10)Fe(20)Se(10) composition exhibited the highest ORR activity in the presence of methanol. This composition was further investigated by synthesis and characterisation of a powder version catalyst [Pt(50)Ru(10)Fe(20)Se(10)/C]. At 0.85 V [vs. reversible hydrogen electrode (RHE)] in the absence of methanol, the Pt/C catalyst exhibited higher ORR current (0.0990 mA) than the Pt(50)Ru(10)Fe(20)Se(10)/C catalyst (0.0902 mA). But much higher specific activity (12.7 μA cmpt–2) was observed in the Pt(50)Ru(10)Fe(20)Se(10)/C catalyst than for the Pt/C catalyst 6.51 μA cmpt–2). In the presence of methanol, the ORR current decreased by 0.0343 and 0.247 mA for the Pt(50)Ru(10)Fe(20)Se(10)/C and Pt/C catalysts, respectively, which proved the excellent methanol tolerance of the Pt(50)Ru(10)Fe(20)Se(10)/C catalyst.  相似文献   

2.
The nanostructured platinum–bismuth catalysts supported on carbon (Pt3Bi/C, PtBi/C and PtBi3/C) were synthesised by reducing the aqueous metal ions using sodium borohydride (NaBH4) in presence of a microemulsion. The amount of metal loading on carbon support was found to be 10 wt.‐%. The catalyst materials were characterised by X‐ray diffraction (XRD), X‐ray fluorescence (XRF), transmission electron microscope (TEM) and electroanalytical techniques. The Pt3Bi/C, PtBi/C and PtBi3/C catalysts showed higher methanol tolerance, catalytic activity for oxygen reduction reaction (ORR) than Pt/C of same metal loading. The electrochemical stability of these nano‐sized catalyst materials for methanol tolerance was investigated by repetitive cycling in the potential range of –250 to 150 mVMSE. Bi presents an interesting system to have a control over the activity of the surface for MOR and ORR. All Pt–Bi/C catalysts exhibited higher mass activities for oxygen reduction (1–1.5 times) than Pt/C. It was found that PtBi/C catalyst exhibits better methanol‐tolerance than the other catalysts.  相似文献   

3.
The activity, selectivity, and methanol tolerance of novel, carbon supported high-metal loading (40 wt.%) Pt/C and Pt3Me/C (Me = Ni, Co) catalysts for the O2 reduction reaction (ORR) were evaluated in model studies under defined mass transport and diffusion conditions, by rotating (ring) disk and by differential electrochemical mass spectrometry. The catalysts were synthesized by the organometallic route, via deposition of pre-formed Pt and Pt3Me pre-cursors followed by their decomposition into metal nanoparticles. Characteristic properties such as particle sizes, particle composition and phase formation, and active surface area, were determined by transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. For comparison, commercial Pt/C catalysts (20 and 40 wt.%, E-Tek, Somerset, NJ, USA) were investigated as well, allowing to evaluate Pt loading effects and, by comparison with the pre-cursor-based catalyst with their much smaller particle sizes (1.7 nm diameter), also particle size effects. Kinetic parameters for the ORR were evaluated; the ORR activities of the bimetallic catalysts and of the synthesized Pt/C catalyst were comparable and similar to that of the high-loading commercial Pt/C catalyst; at typical cathode operation potentials H2O2 formation is negligible for the synthesized catalysts. Due to their lower methanol oxidation activity the bimetallic catalysts show an improved methanol tolerance compared to the commercial Pt/C catalysts. The results indicate that the use of very small particle sizes is a possible way to achieve reasonably good ORR activities at an improved methanol tolerance at DMFC cathode relevant conditions.  相似文献   

4.
The novel catalyst Ni–Cu alloys supported on carbon nanotubes (CNTs) was prepared by reduction with formaldehyde and applied in steam reforming of methanol. With nitric acid and sulfuric acid to create defects on the surface of CNTs and using ethanol to improve the hydrophilicity of CNTs, the Ni–Cu alloys were anchored on the surface of CNTs by co-reduction of Ni- and Cu-precursors under the use of tetra-n-methylammonium hydroxide to reduce the aggregation of Ni–Cu particles. In contrast, Ni–Cu catalyst supported on activated carbon (Ni–Cu/C) was prepared as well, and the bimetal of Ni and Cu supported on CNTs (Ni/Cu/CNTs) was attained by successive reduction of first Cu- and then Ni-precursors. The catalysts were characterized with XRD, ED, FESEM, transmission electron microscopy, and Thermogravimetric analysis. The hydrogen yield in steam reforming of methanol was near 100% at 360 °C over 20 wt.% Ni20–Cu80/CNTs. The catalytic activity of Ni20–Cu80/CNTs is much higher than that of Ni20–Cu80/C and Ni20/Cu80/CNTs.  相似文献   

5.
A series of Cu/Zn/Al/Zr CO2 hydrogenation to methanol catalysts containing different ratios of Al/Zr were prepared using a co-precipitation procedure. SEM, TEM, and XRD characterization showed that all the catalysts comprised crystallites in a fibrous structure and their Cu/Zn crystallite dispersions were better than that of a commercial (COM) catalyst. It is suggested that the high dispersion and stability of the Cu/Zn crystallites due to the fibrous structure enhanced CO2 hydrogenation, and the added Zr component further improved the catalyst. A 5% Zr addition gave a methanol space time yield 80% higher than that on the COM catalyst.  相似文献   

6.
C. Zhou  F. Peng  H. Wang  H. Yu  J. Yang  X. Fu 《Fuel Cells》2011,11(2):301-308
RuO2‐MnO2 complex supported by multi‐wall carbon nanotubes (CNTs) was firstly synthesised by the oxidation–reduction precipitation of RuCl3 and KMnO4 in one step. Then Pt was loaded onto the obtained RuO2‐MnO2/CNTs to fabricate a novel anodic catalyst Pt/RuO2‐MnO2/CNTs for direct methanol fuel cells (DMFCs). The catalyst was characterised by transmission electron microscopy (TEM), X‐ray diffraction (XRD), temperature programmed reduction (TPR), X‐ray photoelectron spectroscopy (XPS) and BET specific surface areas (BET). Pt nanoparticles were found uniformly dispersed on the surface of CNTs, with the average diameter of about 2.0 nm. The activities of methanol and CO electrocatalytic oxidation were analysed, and the reaction mechanism of methanol electro‐oxidation on Pt/RuO2‐MnO2/CNTs catalyst was discussed. The MnO2 in the catalysts improves the proton conductivity and electrochemical active surface area (EAS) for the catalysts. RuO2 improves the CO oxidation activity and Pt dispersion. CNTs provide effectively electron channels. Thus, the Pt/RuO2‐MnO2/CNTs catalyst has high utilisation of the noble metal Pt, high CO oxidation ability and excellent methanol electro‐oxidation activity, being an outstanding anode catalyst for DMFC.  相似文献   

7.
Synthesized by dripping iron acetate into the N-doped carbon film enriched with pyridinic N and followed by annealing at 800 °C, Fe–N-doped amorphous carbon (dFe–N-C) with an Fe content of 0.2 at.% showed excellent electrocatalytic activity, stability and methanol tolerance via a four-electron pathway for oxygen reduction reaction (ORR), which outperformed commercial Pt/C catalyst. More importantly, by tuning the Fe content and annealing temperature, the trace Fe in dFe–N-C was supposed to form high active FeN4 sites with pyridinic N and played an important role in the excellent electrocatalytic performance for ORR.  相似文献   

8.
We have prepared carbon‐supported nanoparticles with the heterogeneous structure of a PdPt shell on a PdCo core which are effective for the oxygen reduction reaction (ORR) in the presence of methanol. The preparation was based on the galvanic replacement reaction between PdCo/C nanoparticles and PtCl42–, a method of general utility which can be extended to the preparation of other core‐shell electrocatalysts. The heterogeneous PdCo‐core and PtPd‐shell architecture was confirmed by multiple techniques including high resolution transmission electron microscopy, energy dispersive X‐ray spectroscopy, powder X‐ray diffraction and X‐ray photoelectron spectroscopy. The activity of the PdCo@PdPt/C catalyst in ORR was evaluated in acidic solutions both with and without methanol (0.1 M). The results showed four to sixfold increases in activity over a standard Pt/C catalyst with no apparent loss of catalyst stability. It is inferred that the strain effect from the lattice mismatch between the shell and core components is the major contributor for the enhancement of ORR activity and selectivity.  相似文献   

9.
A carbon-supported Pd-based PdPt catalyst (PdPt/C) with a small amount of Pt was prepared by borohydride reduction method and its activity in the oxygen electro-reduction reaction (ORR) was investigated in acidic conditions both with and without methanol. For comparison, carbon-supported Pt (Pt/C) and Pd (Pd/C) catalysts were prepared and the ORR activities were compared. Results revealed that the PdPt/C catalyst showed slightly lower ORR activity in terms of onset potential of oxygen reduction than Pt/C catalyst in 0.1M HClO4. However, PdPt/C catalyst exhibited enhanced activity toward selective ORR with methanol-tolerant characteristics in 0.1M HClO4 in the presence of methanol. The PdPt/C catalyst prepared here is suitable for use as a cathodic electrocatalyst in direct alcohol fuel cells after addition of small amount of expensive Pt metal.  相似文献   

10.
Ag/C catalysts with different loading were prepared using a colloidal route to obtain well dispersed catalysts on carbon, with a particle size close to 15 nm. An amount of 20 wt.% Ag on carbon was found to be the best loading in terms of current density and mass activity. The 20 wt.% Ag/C catalyst was then studied and the kinetics towards ORR was determined and compared with that of a 20 wt.% Pt/C catalyst. The number of exchanged electrons for the ORR was found to be close to four with the rotating disk electrode (RDE) as well as with the rotating ring disc electrode (RRDE) techniques. From the RDE results, the Tafel slopes b, the diffusion limiting current density inside the catalytic film (jlfilm) and the exchange current density (j0) were evaluated. The Tafel slopes b and diffusion limiting current densities inside the catalytic film (jlfilm) were found to be in the same order for both catalysts, whereas the exchange current density (j0), which is a suitable estimation of the activity of the catalyst, was at least 10 times higher at the Pt/C catalyst than at the Ag/C catalyst. The behavior of both catalysts in methanol containing electrolyte was investigated and it was found that at a low methanol concentration, the Pt/C catalyst was quasi-tolerant to methanol. But, at a high methanol concentration, the ORR at a Pt/C was affected. However, the Pt/C catalyst showed in each case better activity towards ORR than the Ag/C catalyst, even if the latter one was less affected by the presence of methanol than the former one.  相似文献   

11.
The co-production of hydrogen and carbon nanotubes (CNTs) from the decomposition of ethanol over Fe/Al2O3 at different temperatures and feeding rates of ethanol was investigated systematically. The results indicated that Fe/Al2O3 was a quite active catalyst for the co-production of hydrogen and CNTs and that its activity and stability depended strongly on the Fe loading. Among all catalysts tested, 10 mol% Fe/Al2O3 was the most effective catalyst based on the ratio of hydrogen production, the total H2 yield, and the quality of the CNTs formed. The efficiency of hydrogen production from ethanol decomposition over 10 mol% Fe/Al2O3 reached a maximum of 80% at 800 °C and the yield of CNTs with well-oriented growth and uniform diameter was 141%. In addition, the reaction of hydrogen and CNTs co-produced from ethanol decomposition was proposed.  相似文献   

12.
H. Zhao  L. Pan  J. Jin  L. Li  J. Xu 《Fuel Cells》2012,12(5):876-882
Low oxygen reduction reaction (ORR) activity and high cost of noble metal catalysts are two major challenges in direct methanol fuel cells (DMFCs). Pt‐based catalysts are considered as an ideal alternative to deal with these two problems. While the second component metals play only the role of synergy effect with Pt, they themselves are inert towards activity towards ORR. It is necessary to design a new route to ultilize the second component metal by forming CoNx ORR active site on the base of PtM catalyst. In this paper, PtCo/polypyrrole‐multiwalled carbon nanotubes (PtCo/PPy‐MWCNTs) catalyst containing two types of ORR active site (Pt and CoNx) was synthesized by one pot synthesis route. The effect and dynamic mechanism of the named CoNx active site towards ORR was discussed by X‐ray photoelectron sprectroscopy and linear sweep voltammetry. PtCo/PPy‐MWCNTs cathode catalyst showed improved activity towards ORR and great potential in DMFCs.  相似文献   

13.
Pt-Fe/C catalysts were prepared by a modified polyol synthesis method in an ethylene glycol (EG) solution, and then were heat-treated under H2/Ar (10 vol.%) at moderate temperature (300 °C, Pt-Fe/C300) or high temperature (900 °C, Pt-Fe/C900). As comparison, Pt-Fe/C alloy catalyst was prepared by a two-step method (Pt-Fe/C900B). X-ray diffraction (XRD) and transmission electron microscopy (TEM) images show that particles size of the catalyst increases with the increase of treatment temperatures. Pt-Fe/C300 catalyst has a mean particle size of 2.8 nm (XRD), 3.6 nm (TEM) and some Pt-Fe alloy was partly formed in this sample. Pt-Fe/C900B catalyst has the biggest particle size of 6.2 nm (XRD) and the best Pt-Fe alloy form. Cyclicvoltammetry (CV) shows that Pt-Fe/C300 has larger electrochemical surface area than other Pt-Fe/C and the highest utilization ratio of 76% among these Pt-based catalysts. Rotating disk electrode (RDE) cathodic curves show that Pt-Fe/C300 has the highest oxygen reduction reaction (ORR) mass activity (MA) and specific activity (SA), as compared with Pt/C catalyst in 1.0 M HClO4. However, Pt-Fe/C catalyst does not appears to be a more active catalyst than Pt/C for ORR in 1.0 M HClO4 + 0.1 M CH3OH. Pt-Fe/C300 exhibits higher ORR activity and better performance than other Pt-Fe/C or Pt/C catalysts when employed for cathode in direct methanol single cell test, the enhancement of the cell performance is logically attributed to its higher ORR activity, which is probably attributed to more Pt0 species existing and Fe ion corrosion from the catalyst.  相似文献   

14.
2,3,5,6-Tetra(2-pyridyl)pyrazine (TPPZ) was employed as a ligand to prepare an iron(II) complex (Fe–TPPZ) that served as a precursor to synthesize carbon-supported catalysts (Fe–Nx/C) through heat-treatment at 600, 700, 800 and 900 °C under N2 atmosphere. Both the structure and composition of the synthesized Fe–Nx/C were analyzed by X-ray diffraction and energy-dispersive X-ray microanalysis, respectively. The rotating disk and ring-disk electrode measurements showed that these catalysts have strong ORR activity with an overall 4-electron transfer process through a (2 + 2)-electron transfer mechanism, which was assigned to the catalytic function of the Fe–Nx center. A study on the heat-treatment temperature on the ORR activity showed that 800 °C is the optimal temperature for the synthesized catalysts. Furthermore, the effect of both catalyst and Nafion® ionomer loadings in the catalyst layer on the corresponding ORR activity was also investigated. The kinetic parameters such as the chemical reaction rate between O2 and Fe–Nx/C (adduct formation reaction), the rate constant for the rate-determining step (RDS), and the electron numbers in the ORR, were obtained. The methanol tolerance of the catalyst was also tested. To validate the ORR activity, a membrane electrode assembly in which the cathode catalyst layer contained Fe–Nx/C was constructed and tested in a real fuel cell. The results obtained are encouraging when compared with similar non-noble catalysts.  相似文献   

15.
We report here a microwave‐assisted solvothermal (MW‐ST) method to synthesise carbon‐supported multimetallic nanostructured alloys of Pt, Pd and Co with high crystallinity and homogeneity for electrocatalytic application in fuel cells. Multimetallic nanoalloy electrocatalysts have been synthesised by a one‐pot, rapid MW‐ST method within 15 min at <300 °C without any post‐annealing in reducing gas atmospheres. For a comparison, same multimetallic alloys were also synthesised by heat treatment of co‐precipitated metals. Significant differences were observed in the phase structure and surface composition of the alloys synthesised by the two methods, which were rationalised based on the synthesis procedures adopted. Further, the multimetallic alloys were also explored for their electrocatalytic applications as cathode catalysts for oxygen reduction reaction (ORR). The multimetallic alloys, synthesised by the MW‐ST method, show much higher ORR activity compared to their counterparts synthesised by the conventional borohydride reduction method. While the ORR activity of Pt70Pd20Co10 is comparable to that of commercial Pt, the ORR activity of Pt50Pd30Co20 in direct methanol fuel cells (DMFC) is superior to that of commercial Pt at high methanol concentrations due to its high tolerance to methanol that may crossover from the anode to the cathode.  相似文献   

16.
In the development of fuel cells, it is the key to large-scale commercialization of fuel cells to rationally design and synthesize efficient and non-noble metals-based bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this paper, spinel CoFe2O4/carbon nanotube composites (CoFe2O4/CNTs/FA) were synthesized by solvothermal and calcination method. XRD, TEM, XPS and BET characterizations indicate that the addition of complexing agent fumaric acid can improve the crystal growth kinetics and morphology of CoFe2O4/CNTs nanohybirds. The as-synthesized CoFe2O4/CNTs/FA pyrolyzed at 500 °C have an outstanding bifunctional catalytic activity for ORR and OER with the potential of 1.62V (vs. RHE) at a current density of 10 mA/cm2 and half-wave potential E1/2 = 0.808V (vs. RHE) in alkaline electrolyte, respectively. It is obviously better than unloaded CoFe2O4 nanoparticles and commercial CNTs. CoFe2O4/CNTs/FA also exhibit better methanol tolerance ability and durability than commercial Pt/C and RuO2 catalyst. This investigation broadens an idea of simple compounding of spinel with carbon-based materials to improve electrochemical properties.  相似文献   

17.
Cu/ZnO/Al2O3 catalysts with Cu/Zn/Al ratios of 6/3/1 were precipitated and aged by conventional and microwave heating methods and tested in the slurry phase reactor for methanol synthesis. The effect of technological condition of precipitation and aging process under microwave irradiation on the catalytic performance was investigated to optimize the preparing condition of Cu/ZnO/Al2O3 catalyst. The results showed that the microwave irradiation during precipitation process could improve the activity of the catalyst, but had little effect on the stability. While the microwave irradiation during aging process has a great benefit to both the activity and stability of the catalyst, the catalyst aged at 80°C for 1 h under microwave irradiation possessed higher methanol space time yield (STY) and more stable catalytic activity. The activity and stability of the catalyst was further enhanced when microwave irradiation was used in both precipitation and aging processes; the optimized condition for the catalyst precursor preparation was precipitation at 60°C and aging at 80°C under microwave irradiation.  相似文献   

18.
A polymer nanocomposite system comprising epoxidized soya oil plasticized‐polylactic acid (PLA) and amine functionalized carbon nanotubes (NH2 functionalized‐CNTs) has been prepared with the aim of producing electrically conductive PLA products suitable for shape memory (SM) applications. An influence of the addition of NH2 functionalized‐CNTs on thermal, mechanical properties, and morphology development of plasticized PLA/NH2 functionalized‐CNTs nanocomposite was investigated by differential scanning calorimetry, tensile tests, scanning electron microscope, and atomic force microscopy, respectively. In addition, electroactive SM behavior in resulting nanocomposite was evaluated by a bending test, and the recovery process was recorded with video camera. The results showed that SM behavior in nanocomposite was influenced by NH2 functionalized‐CNTs weight percent in matrix. Nanocomposite with 5 wt% NH2 functionalized‐CNTs showed optimum values of shape recovery due to its relatively high electrical conductivity, and an adequate degree of crosslinking between NH2 functionalized‐CNTs and plasticized PLA matrix. However, more than 5 wt% loading of NH2 functionalized‐CNTs dropped down an elongation at break, while tensile at break increased with the increasing of CNTs weight percent in matrix. Interesting point in this study is that all improvements in the properties of resulting PLA/NH2 functionalized‐CNTs nanocomposite sheet were observed at very low filler content, while other literature reports where large quantities of CNTs were used. POLYM. COMPOS., 35:2129–2136, 2014. © 2014 Society of Plastics Engineers  相似文献   

19.
Adding Fe to Pt/SiO2 catalysts improves activity for methanol synthesis from 3H2/CO at 523 K and 3.19 MPa. Over 90% methanol selectivity can be achieved at low conversion, depending on the metal composition and dispersion.In situ Mössbauer measurements after reduction in hydrogen at 673 K and during steady-state reaction show the presence of PtFe alloy and Fe3+ phases only. The amount of PtFe alloy increases as catalysts activate to produce methanol with higher activity and selectivity.  相似文献   

20.
Motivated by the demonstrated magnetic field effect on the oxygen reduction reaction in polymer electrolyte fuel cells (PEMFC), a number of PtFe/C catalysts with different magnetic characteristics were prepared and tested for methanol electrooxidation in acidic solutions at room temperature. The catalysts were characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray microanalysis (EDX) and vibrating sample magnetometry (VSM). The activity and CO tolerance of the catalysts in the methanol oxidation reaction (MOR) was measured by cyclic voltammetry and anodic CO stripping voltammetry, respectively. Heat treatment transformed the as-prepared PtFe/C from a face-centered cubic (fcc) structure into a face-centered tetragonal (fct) structure. Vibrating sample magnetometer (VSM) measurements confirmed the as-prepared PtFe/C as superparamagnetic, and the heat-treated catalysts as ferromagnetic. The heat-treated ferromagnetic catalysts were, however, low in specific mass activity and showed no improvement in CO tolerance relative to the as-prepared one. These results led us to conclude that the magnetic modification of catalysts through heat treatment have no practical contributions to the catalysis of MOR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号