首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A boron dilution scenario caused by the connection of a previously disconnected primary circuit loop in a Russian WWER-440 type reactor is considered. The scenario is specific for this reactor type because of the existence of main isolating valves (MIVs) in the loops. The additional failure of safety systems during the connection procedure was assumed. The analysis was carried out by the combined use of SiTAP and DYN3D. Several modifications of the scenario were considered using the fast running plant simulator code SiTAP. The scenario with the most dangerous consequences was identified and has been analysed using the three-dimensional core model DYN3D, including a coolant mixing model for the lower plenum. The boundary conditions for the DYN3D analysis were obtained from SiTAP calculation. Comparing the results of both codes, a similar behaviour of the mean reactor parameters can be observed, but in the 3D analysis local exceeding of safety relevant parameters was btained. Thus, the point kinetics model is not conservative, but by using SiTAP more realistic time-dependent boundary conditions for the 3D model could be provided than in previous analyses. The strong consequences of the considered scenario suggest the necessity of additional measures for preventing this type of accidents.  相似文献   

2.
The paper presents a solution of VVER-1000 Coolant Transient Benchmark – Phase 1 (V1000CT-1) of Exercise 3 performed with the coupled reactor dynamic code DYN3D and system code ATHLET at NRI Řež. The first part of the paper contains brief characteristics of VVER-1000 NPP input deck and describes also the applied reactor core model. The second part introduces the steady-state results and important time dependencies, compared with experimental values. The calculation results show that such type of transient can be realistically described by the coupled codes DYN3D–ATHLET.  相似文献   

3.
Validation of coupled codes using VVER plant measurements   总被引:3,自引:4,他引:3  
A data set of five transients at different VVER type nuclear power plants was collected in order to validate neutron kinetics/thermal hydraulics codes. Two of these transients ‘drop of control rod at nominal power at Bohunice-3’ of VVER-440 type and ‘coast-down of 1 from 3 working MCPs at Kozloduy-6’ of VVER-1000 type, were then utilised for code validation. Eight institutes contributed to the validation with 10 calculations using 5 different combinations of coupled codes. The thermal hydraulic codes were ATHLET, SMABRE and RELAP5 and the neutron kinetic codes DYN3D, HEXTRAN, KIKO3D and BIPR8. The general behaviour of both the transients was quite well calculated with all the codes. Even an elementary modelling of coolant mixing in reactor pressure vessel under asymmetric transients improved correspondence to the measurements. Some differences between the calculations seem to indicate that fuel modelling and treatment of VVER-440 control rods need further consideration. The simultaneous validation interacted with the data collection effort and thus improved its quality. The complexity of data collection systems and sometimes conflicting data, however, called for compromises and interpretation guides that also taught the analysts balanced plant modelling.  相似文献   

4.
Plant-measured data provided by the OECD/NEA VVER-1000 coolant transient benchmark programme were used to validate the DYN3D/RELAP5 and DYN3D/ATHLET coupled code systems. Phase 1 of the benchmark (V1000CT-1) refers to an experiment that was conducted during the commissioning of the Kozloduy NPP Unit 6 in Bulgaria. In this experiment, the fourth main coolant pump was switched on whilst the remaining three were running normal operating conditions. The experiment was conducted at 27.5% of the nominal level of the reactor power. The transient is characterized by a rapid increase in the primary coolant flow through the core, and as a consequence, a decrease of the space-dependent core inlet temperature. The control rods were kept in their original positions during the entire transient. The coupled simulations performed on both DYN3D/RELAP5 and DYN3D/ATHLET were based on the same reactor model, including identical main coolant pump characteristics, boundary conditions, benchmark-specified nuclear data library and nearly identical nodalization schemes. In addition to validation of the coupled code systems against measured data, a code-to-code comparison between simulation results has also been performed to evaluate the respective thermal hydraulic models of the system codes RELAP5 and ATHLET.  相似文献   

5.
Plant-measured data provided within the specification of the OECD/NEA VVER-1000 coolant transient benchmark (V1000CT) were used to validate the DYN3D/RELAP5 and DYN3D/ATHLET coupled code systems. Phase 1 of the benchmark (V1000CT-1) refers to the MCP (main coolant pump) switching on experiment conducted in the frame of the plant-commissioning activities at the Kozloduy NPP Unit 6 in Bulgaria. The experiment was started at the beginning of cycle (BOC) with average core expose of 30.7 effective full power days (EFPD), when the reactor power was at 27.5% of the nominal level and three out of four MCPs were operating. The transient is characterized by a rapid increase in the primary coolant flow through the core and, as a consequence, a decrease of the space-dependent core inlet temperature. Both DYN3D/RELAP5 and DYN3D/ATHLET analyses were based on the same reactor model, including identical MCP characteristics, boundary conditions, benchmark-specified nuclear data library and nearly identical nodalization schemes. For an adequate modelling of the redistribution of the coolant flow in the reactor pressure vessel during the transient a simplified mixing model for the DYN3D/ATHLET code was developed and validated against a computational fluid dynamics calculation.

The results of both coupled code calculations are in good agreement with the available experimental data. The discrepancies between experimental data and the results of both coupled code calculations do not exceed the accuracy of the measurement data. This concerns the initial steady-state data as well as the time histories during the transient. In addition to the validation of the coupled code systems against measured data, a code-to-code comparison between simulation results has been performed to evaluate relevant thermal hydraulic models of the system codes RELAP5 and ATHLET and to explain differences between the calculation results.  相似文献   


6.
A program is in the process of studying numerically boron mixing in the downcomer of Loviisa NPP (VVER-440). Mixing during the transport of a diluted slug from the loop to the core might serve as an inherent protection mechanism against severe reactivity accidents in inhomogenous boron dilution scenarios for PWRs. The commercial general purpose Computational Fluid Dynamics (CFD) code PHOENICS is used for solving the governing fluid flow equations in the downcomer geometry of VVER-440. So far numerical analyses have been performed for steady state operation conditions and two different pump driven transients. The steady state analyses focused on model development and validation against existing experimental data. The two pump driven transient scenarios reported are based on slug transport during the start of the sixth and first loop, respectively. The results from the two transients show that mixing is case and plant specific; the high and open downcomer geometry of VVER-440 seems to be advantageous from mixing point of view. In addition the analyzing work for the ‘first pump start' scenario brought up some considerations about flow distribution in the existing experimental facilities.  相似文献   

7.
During the last years, boron dilution events with the potential of reactivity transients were an important issue of German PWR safety analyses. A coolant with a low-boron concentration could be collected in localized areas of the reactor coolant system, e.g., by separation of a borated reactor coolant into highly concentrated and diluted fractions (inherent dilution) which can occur during reflux-condenser heat transfer after a small break loss of coolant accident with a limited availability of the emergency core cooling systems.During the course of follower core assessments, TÜV NORD SysTec appraises safety analyses of boron dilution events presented by the utilities. These analyses are based on the simulation of boron dilution and transport processes in conjunction with a number of dedicated experiments. The analyses demonstrate that boron dilution events cannot lead to recriticality of the core. Hence, the boron concentration at the core inlet has to be determined.TÜV NORD SysTec applies the CFD code FLUENT for the investigation of boron dilution events in pressurized water reactors. To affirm the FLUENT abilities for the simulation of boron dilution events, a validation against the ROCOM experiment T6655_21 with a density-driven coolant mixing was performed. This validation proves that FLUENT is able to appropriately simulate the effects of boron transport and dilution such as streaks of coolant with lower density in the downcomer. Deficits were identified in the simulation of fluid layering in the cold leg, which fortunately have a rather small influence on the predicted core inlet concentration. Therefore, the boron concentration in the reactor core can be determined with sufficient accuracy to solve the safety issue, regardless of the core becoming critical or not.  相似文献   

8.
A parameter study, incorporating stationary and transient core calculations, was carried out for a hypothetical boron dilution event in a pressurized water reactor, using the three-dimensional (3D) neutron kinetics core model DYN3D in combination with a fast running semi-analytical coolant mixing model. It was assumed that a slug of deborated water was formed in one of the loops, due to a secondary-to-primary steam generator leakage during outage. It was further assumed that this slug is not recognised and that the first main coolant pump is started, in preparation to returning to power. At the initiation of pump start-up, the reactor is still in the cold and deeply sub-critical state. By varying the initial slug volume, it was found in stationary calculations that, for the given core configuration, slugs of less than 14 m3 do not lead to re-criticality. Transient core calculations with larger slug volumes show a significant reactivity insertion and over-criticality. However, according to the calculations, even an over-criticality of about 2$ did not lead to safety-relevant consequences. The power excursion is mitigated and stopped by Doppler feedback. The influence of the cross-section library on the course of the transient was investigated, applying an alternative library. Differences in the global core parameters lead to quantitative differences in the time and height of the power excursion. In addition, it is shown that numerical diffusion has to be suppressed in order to describe the boron transport correctly, especially at low flow velocities. Otherwise the neutron kinetic core behaviour cannot be correctly modelled.  相似文献   

9.
《Annals of Nuclear Energy》1999,26(15):1407-1417
This paper summarizes the current status of the Pennsylvania State University (PSU) version of the coupled three-dimensional (3-D) thermal-hydraulic/kinetics TRAC-PF1/NEM code for pressurized water reactor (PWR) transient and accident analysis and describes applications to reactivity insertion accident (RIA) simulations as well as recent developments. The TRAC-PF1/NEM methodology utilizes closely coupled 3-D thermal-hydraulics and 3-D core neutronics transient models to simulate the vessel and a 1-D simulation of the primary system. An efficient and flexible cross-section generation procedure was developed and implemented into TRAC-PF1/NEM. These features make the coupled code capable of modeling PWR reactivity transients, including boron dilution transients, in a reasonable amount of computer time. Three-dimensional studies on hot zero power (HZP) rod ejection and main steam line break (MSLB) transients in a PWR, as well as a large break loss-of-coolant-accident (LBLOCA) and boron dilution transients, were accomplished using TRAC-PF1/NEM. The results obtained demonstrate that this code is appropriate for analysis of the space-dependent neutronics and thermal-hydraulic coupled phenomena related to most current safety issues.  相似文献   

10.
As part of the reactor dynamics activities of FZK/IRS, the qualification of a detailed 3D CFD model of a reactor pressure vessel is a key step in safety evaluations for improving predictive capabilities and acceptability of commercial CFD tools in reactor physics. The VVER-1000 Coolant Transient Benchmark, initiated by OECD, represents an excellent opportunity for validation. In this work a CFD model for the complete VVER-1000 reactor pressure vessel is presented. Due to computational limits simplifications of the core and of some other geometrical details are introduced. The simulated scenario is the heat-up of one coolant loop in case of the isolation of a steam generator while the reactor is operating at a low power level. Two transient runs with a first and second order approximation of the spatial discretization are performed. Unexpectedly, the first order method reveals better agreement with measured data.  相似文献   

11.
《Annals of Nuclear Energy》2005,32(17):1799-1824
This paper reports about the DYN1D-MSR code development and dynamics studies of the molten salt reactors (MSR) – one of the ‘Generation IV International Forum’ concepts. In this forum the graphite-moderated channel type MSR based on the previous Oak Ridge National Laboratory research is considered.The liquid molten salt serves as a fuel and coolant, simultaneously and causes two physical peculiarities: the fission energy is released predominantly directly into the coolant and the delayed neutrons precursors are drifted by the fuel flow. The drift causes the spread of delayed neutrons distribution to the non-core parts of primary circuit and it can lead to a reactivity loss or gain in the case of fuel flow acceleration or deceleration, respectively. Therefore, specific 3D tool based on in house code DYN3D was developed in FZR. The code DYN3D-MSR is based on the solution of two-group neutron diffusion equation by the help of a nodal expansion method and it includes models of delayed neutrons drift and specific MSR heat release distribution.In this paper the development and verification of 1D version DYN1D-MSR of the code is described. The code has been validated with the experimental data gained from the molten salt reactor experiment performed in the Oak Ridge and after the validation it was applied to several typical transients (overcooling of fuel at the core inlet, reactivity insertion, and the fuel pump trip).  相似文献   

12.
In the framework of joint effort between the Nuclear Energy Agency (NEA) of OECD, the United States Department of Energy (US DOE), and the Commissariat a l'Enerige Atomique (CEA), France a coupled three-dimensional (3D) thermal-hydraulics/neutron kinetics benchmark was defined. The overall objective of OECD/NEA V1000CT benchmark is to assess computer codes used in analysis of VVER-1000 reactivity transients where mixing phenomena (mass flow and temperature) in the reactor pressure vessel are complex. Original data from the Kozloduy-6 Nuclear Power Plant are available for the validation of computer codes: one experiment of pump start-up (V1000CT-1) and one experiment of steam generator isolation (V1000CT-2). Additional scenarios are defined for code-to-code comparison. As a 3D core model is necessary for a best-estimate computation of all the scenarios of the V1000CT benchmark, all participants were asked to develop their own core coupled 3D thermal-hydraulics/neutron kinetics models using the data available in the benchmark specifications and a common cross-section library. The first code-to-code comparisons based on the V1000CT-1 Exercise 2 specifications exhibited unacceptable discrepancies between two sets of results. The present paper focuses on the analysis of the observed discrepancies. The VVER-1000 3D neutron kinetics models are based on cross-section data homogenized on the assembly level. The cross-section library, provided as part of the benchmark specifications, thus consists in a set of parameterized two group cross sections representing the different assemblies and the reflectors. The origin of the observed large discrepancies was found mainly to lie in the methods used to solve the diffusion equation. The VVER reflector properties were also found to enhance discrepancies by increasing flux gradients at the core/reflector interface thus highlighting more the difficulties in some codes to handle high exponential flux gradients. This paper summarizes the different steps applied to analyze the neutronic codes and their predictions as well as the impact of cross-section generation procedures.  相似文献   

13.
The VVER-1000 coolant transient benchmark is intended for validation of couplings of the thermal hydraulic codes and three-dimensional neutron kinetic core models. It concerns switching on a main coolant pump when the other three main coolant pumps are in operation. The problem is based on an experiment performed in Kozloduy NPP in Bulgaria. In addition to the real plant transient, an extreme scenario concerning a control rod ejection after switching on a main coolant pump was calculated. At VTT the three-dimensional advanced nodal code HEXTRAN is used for the core dynamics, and the system code SMABRE as a thermal hydraulic model for the primary and secondary loop. The parallelly coupled HEXTRAN–SMABRE code has been in production use since early 1990s, and it has been extensively used for analyses of VVER NPPs. The SMABRE input model is based on the standard VVER-1000 input used at VTT. The whole core calculation is performed with HEXTRAN. Also the core model is based on earlier VVER-1000 models. Nuclear data for the calculation were specified in the benchmark. The paper outlines the input models used for both codes. Calculated results are introduced both for the coupled core system with inlet and outlet boundary conditions and for the whole plant model. Parametric studies have been performed for selected parameters.  相似文献   

14.
The two commonly used approaches to describe the VVER radial reflectors in diffusion codes, by core-reflector albedos and by a ring of diffusion assembly size nodes, are discussed. The advantages and disadvantages of the first approach are presented first, then the Koebke's equivalence theory is outlined and its implementation for the VVER radial reflectors is discussed. Results for the VVER-1000 reactor are presented.  相似文献   

15.
The current status of the prediction of radiation embrittlement of the vessel material in first- and second-generation VVER reactors is analyzed. The radiation service life of the vessel of each type of reactor is determined by factors due to the special features of the operating regime of the reactor and the chemical composition of the vessel metal. A method of monitoring the state of the material of first-generation reactor vessels is examined. The method is based on extracting and studying samples of a metal from the inner surface of the sample. The main problems of monitoring the state of the metal in VVER-440/213 and VVER-1000 vessels are analyzed. It is indicated that adjustments must be made in the normative relations which are currently used for predicting radiation embrittlement of vessel material. The most important questions concerning reactor dosimetry for VVER vessel material are illuminated.__________Translated from Atomnaya Energiya, Vol. 98, No. 6, pp. 460–472, June 2005.  相似文献   

16.
The creation of conditions in the core of a MIR reactor that allow safe experiments modeling the parameters of VVER fuel elements with power ramping and cyclic power change as well as with an anticipated reactivity accident is examined. The construction of experimental facilities is determined. The core configuration and control-rod positions, which make it possible to attain the required parameters with the minimum reactor power and allow experiments to be performed safely, are chosen. Information about the tests performed in the reactor is presented. __________ Translated from Atomnaya énergiya, Vol. 104, No. 5, pp. 279–284, May, 2008.  相似文献   

17.
Many neutronics as well as thermal-hydraulics calculations have been made to find the performance of the proposed annular fuels (internally and externally cooled fuel pins) for both next generation PWRs and BWRs. Specifically, there has not been a significant study on the Russian type VVER-1000 reactors with annular fuels. Our aim herein is to study two important safety coefficients of the Iranian VVER-1000 core including hexagonal annular fuel assemblies at its BOC. The safety coefficients are “prompt reactivity coefficient” and “power reactivity coefficient”, where all simulations are made using MCNP-5 code. We found less (absolutely) Doppler coefficient for the next generation VVER-1000 and therefore Doppler coefficient decreasing is a good feature to avoid more resonance neutrons absorbing in the U-238; causes more fission density and also less soluble boron for core controlling (at the BOC) with comparing to the current VVER-1000 solid pins.  相似文献   

18.
On the basis of pressure fluctuation measurements in some primary circuit loops at 2nd Unit of Kola NPP with VVER-440 type reactors, the shapes of acoustic standing waves (ASW) were determined at frequencies corresponding to four minimal oscillation eigenfrequencies in the primary circuit coolant. On identification of the ASW modes and properties, experimental results based on six circulating loops in symmetric arrangement allowed determination of the three-dimensional space structure of the wave nodes and antinodes inside and outside of the reactor vessel (RV). As part of this analysis, the geometric features of the primary circuit that caused the formation of these standing waves were identified. Differences in each ASW shape were shown to cause different individual effects on the neutron field in the reactor core and on fuel assembly vibration. This has been partially confirmed by ex-core neutron ionization chamber noise analysis. One type of ASW, possessing an antinode inside the RV, can be used for measurement of the pressure coefficient of reactivity. However, this must be done with care to avoid the potential for incorrect results in some cases. The results presented in this paper can be readily extended to other VVER type reactors with both odd and even number of loops.  相似文献   

19.
为保证和增强池式快堆的安全性,通过对比分析现有的非能动停堆装置,基于将某些合金在特定温度下拉伸强度发生突变的特性作为钠冷快堆非能动停堆的触发条件,提出了一种钠冷快堆熔断式非能动停堆系统的设计概念,能在发生无保护超功率事故或无保护失流事故的情况下引入负反应性。针对中国实验快堆(CEFR)的设计完成了熔断式非能动停堆系统的方案设计论证,并利用分析程序DYN4G对这一非能动停堆系统在CEFR无保护事故下的响应情况进行了模拟计算,由此得到了其组件设计的关键参数。分析结果表明,通过合理设计,在发生无保护事故时,熔断式非能动停堆系统能有效降低事故情况下的堆芯燃料组件及冷却剂的温度,进一步提高了钠冷快堆应对严重事故的能力。  相似文献   

20.
When the water level in the reactor pressure vessel (RPV) of a pressurized water reactor (PWR) is low enough and the core temperature is such that the coolant in that region boils, reflux-condensation conditions are established. Under such conditions, almost boron-free water is collected in a region of the primary system forming a non-borated slug. If subsequent natural circulation is established or a reactor coolant pump (RCP) is restarted, the slug could be transported to the core. This scenario configures an important part of the so-called boron issue. The Energy Systems Analysis Group at the Institute of Energy Technologies (INTE) of the Technical University of Catalonia (UPC) has studied the boron issue in three different stages. The steps were the following: participation in OECD-related projects, code improvement and investigation at nuclear power plant (NPP) scenarios. The third step is the main aim of this paper and consists of a continuation of the previous projects in the field of NPP analysis. The aim of this paper is to study SBLOCA transients with boron dilution in PWR. The chosen NPP was Ascó-2 which is a 3-loop-2940,6 MWth Westinghouse PWR. The paper contains some references to OECD/SETH and OECD/PKL experimental projects and analyses an established scenario including features of boron transport and sensitivity calculations for relevant parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号