共查询到18条相似文献,搜索用时 31 毫秒
1.
2.
社会媒体成为用户分享与获取信息的重要平台。发现感兴趣的微博账户与信息是社交媒体平台最重要的活动,其关键问题在于用户兴趣模型的构建。提出基于微博分类的用户兴趣识别方法。首先人工构建目标分类体系,基于典型微博账户采集微博训练语料训练微博分类器,而后通过对用户微博进行分类识别出用户感兴趣的类别。实验表明基于典型主题类别微博,结合词语与主题的特征可有效进行微博分类达到86%的F值,输出的类别可准确表示用户兴趣。 相似文献
3.
将马尔可夫判决过程和强化学习算法相结合,给出了异构无线网络环境下用户业务偏好评估模型的技术框架.为动态环境下用户需求的感知、量化和适配特征的研究提供了基本的数学描述,对解决用户体验的评价问题和业务与业务环境的适配问题提供了新的研究思路.仿真结果表明构建的模型能够在满足用户偏好的前提下智能选择业务. 相似文献
4.
5.
以支付宝为研究对象探讨了情景化用户偏好对信息推荐的影响,提出了基于情景化用户偏好的信息推荐流程,改进了已有的推荐算法.将传统的协同过滤算法中由项目评分预测项目评分的模式调整为以用户收支模式预测用户的功能使用情况的模式.在推荐结果输出阶段,通过输出情景化将时间这一情景因素融入推荐结果的输出中,在合适的时间段向用户进行对应... 相似文献
6.
7.
尹健康;梁筱雨;刘志;陆梓祺 《电子技术与软件工程》2020,(24):201-202
本文以某卷烟企业为案例背景,引入用户偏好预测模型,探索互联网精准营销的实现路径,并实现用户画像标签的应用。本文在合法合规前提下,提供第三方群体用户画像服务,搭建基于用户画像的用户卷烟偏好预测模型。模型通过合法合规的匹配方式,进行用户画像。本文借助TF-IDF方法预测用户对卷烟的情感倾向。 相似文献
8.
周向军 《微电子学与计算机》2009,26(8)
为满足Web用户的偏好需求与服务质量,提出一种用户偏好属性及用户满意度表示方法,并给出了相应的用户偏好函数和满意度函数,根据用户偏好的多维属性矢量,采用综合服务满意度对服务进行优化,该策略能反映用户的偏好,实现个性化服务,实验结果及与方法的比较表明,提出的优化策略能根据用户偏好的相对性实现个性化服务,并且具有更好的查准率与召回率性能. 相似文献
9.
基于用户偏好的电视节目个性化推荐是一种内容的推荐算法。其中用户偏好的不确定性和描述上的模糊性是用户模型建立的难点。在此首先通过对样本用户过往观看记录数据进行分析,发现用户偏好存在一定的时不变性。把偏好在一定时间内不发生变化的用户称作置信用户,在这个基础上,建立基于节目特征向量空间的用户偏好模型,并提出基于用户偏好度模型的推荐算法。该算法通过用户观看视频的历史记录得到用户的偏好模型,并基于该偏好模型向用户推荐节目。仿真实验证明了算法的收敛性和有效性。 相似文献
10.
链接预测与属性推断是社交网络数据挖掘的两项重要任务.之前的大部分研究工作将链接预测和属性推断视为不同的问题,分别研究解决方法.然而,根据网络结构的同质性理论,社交网络中的链接与属性之间具有内在关联.本文提出了基于社团结构的链接预测和属性推断联合解决方法(LAIC),将社团结构作为链接预测与属性推断的关联因子,利用用户属性和社团结构进行链接预测,利用链接信息得到社团属性进而推断用户属性.LAIC不仅同时解决了链接预测和属性推断问题,而且通过迭代使链接预测和属性推断的准确率可以相互提升.两个真实数据集上的实验证明LAIC方法是有效的. 相似文献
11.
User-analysis techniques are mainly used to recommend friendsand information. This paper discusses the data characteristicsof microblog users and describes a multidimensional user rec-ommendation algorithm that takes into account microbloglength, relativity between microblog and users, and familiaritybetween users. The experimental results show that this multidi-mensional algorithm is more accurate than a traditional recom-mendation algorithm. 相似文献
12.
13.
14.
This article provides empirical evidence for two hypotheses in the affordance literature. First, by leveraging a small affordance change — Twitter increasing its character limit from 140 to 280 on November 7, 2017, employing an instrumental variable approach, and examining 143,771 original tweets published by organizational and leadership accounts half a year before and after the intervention, we showed the direct causal relationship between affordances and communication behavior on digital media platforms. Second, by exploring what factors could explain the heterogeneity of causal effects, we showed that previous endogenous perceptions of communication constraint predicted later behavioral changes, despite the same exogenous intervention. These findings highlight the role of human agencies in the face of technological changes and provide empirical support for the affordance approach to information communication technologies (ICTs) as a reconciliation between technological determinism and social constructivism. 相似文献
15.
16.
协同过滤推荐算法通过研究用户的喜好,实现从海量数据资源中为用户推荐其感兴趣的内容,在电子商务中得到了广泛的应用。然而,当此类算法应用到社交网络时,传统的评价指标与相似度计算的重点发生了变化,从而出现推荐算法效率偏低,推荐准确度下降问题,导致社交网络中用户交友推荐满意度偏低。针对这一问题,引入用户相似度概念,定义社交网络中属性相似度,相似度构成与计算方法,提出一种改进的协同过滤推荐算法,并给出推荐质量与用户满意度评价方法。实验结果表明:改进算法能有效改善社交网络中的推荐准确性并提高推荐效率,全面提高用户满意度。 相似文献
17.
This article reports architectural aspects of a solution for detecting and resolving feature interactions (FI) in SIP-based IP telephony architectures. The solution takes into account the special context of SIP that permits end user programmability, which means the possibility for end users to design their own tailored services and personalize them as much as they like. Programmability renders more frequent the so called multi-component FI situations, where the conflicting services reside in different network components. This type of FI is the more complicated one. The authors describe how the different components of the presented SIP architecture operate together in order to run services and avoid this type of interactions. A prototype of the solution has been developed. 相似文献
18.
《中国邮电高校学报(英文版)》2014
Using the social information among users in recommender system can partly solve the data sparsely problems and significantly improve the performance of the recommendation system. However, the recommendation systems which using the users' social information have two main problems: the explicit user social connection information is not always available in real-world recommender systems, and the user social connection information is directly used in recommender systems when the user explicit social information is available. But as we know that the user social information is not all based on user interest, so this can introduce noise to the recommender systems. This paper proposes a social recommender system model called interest social recommendation (ISoRec). Based on probability matrix factorization (PMF), the model addresses the problems mentioned above by combining user-item rating matrix, explicit user social connection information and implicit user interest social connection information to make more accurately recommendation. In addition, the computational complexity of our algorithm is linear with respect to the number of observed data sets used in this algorithm, and can scalable to very large datasets. 相似文献