首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We report on the high-performance of InGaN multiple-quantum well light-emitting diodes (LEDs) on Si (111) substrates using metal-organic chemical vapor deposition. A high-temperature thin AlN layer and AlN-GaN multilayers have been used for the growth of high-quality GaN-based LED structure on Si substrate. It is found that the operating voltage of the LED at 20 mA is reduced to as low as 3.8-4.1 V due to the formation of tunnel junction between the n-AlGaN layer and the n-Si substrate when the high-temperature AlN layer is reduced to 3 nm. Because Si has a better thermal conductivity than sapphire, the optical output power of the LED on Si saturates at a higher injected current density. When the injected current density is higher than 120 A/cm/sup 2/, the output power of the LED on Si is higher than that of LED on sapphire. The LED also exhibited the good reliability and the uniform emission from a large size wafer. Cross-sectional transmission electron microscopy observation indicated that the active layer of these LEDs consists of the dislocation-free pyramid-shaped (quantum-dot-like) structure.  相似文献   

2.
采用在AlN缓冲层后原位沉积SiN掩膜层,然后横向外延生长GaN薄膜.通过该法在硅衬底上获得了1.7 μm无裂纹的GaN薄膜,并在此基础上外延生长出了GaN基发光二极管(LED)外延片,其外延片的总厚度约为1.9 μm.采用高分辨率双晶X-射线衍射(DCXRD)、原子力显微镜(AFM)测试分析.结果表明,GaN薄膜(0002)面的半峰全宽(FWHM)降低到403 arcsec,其表面平整度得到了很大的改善;InGaN/GaN多量子阱的界面较平整,结晶质量良好.光致发光谱表明,GaN基LED峰值波长为469.2 nm.  相似文献   

3.
An interesting GaN-based light-emitting diode (LED) with a ten-period i-InGaN/p-GaN (5-nm/5-nm) superlattice (SL) structure, inserted between a multiple-quantum-well structure and a p-GaN layer, is fabricated and studied. This inserted SL can be regarded as a confinement layer of holes to enhance the hole injection efficiency. As compared with a conventional LED device without the SL structure, the studied LED exhibits better current-spreading performance and an improved quality. The turn-on voltage, at 20 mA, is decreased from 3.32 to 3.14 V due to the reduced contact resistance as well as the more uniformity of carrier injection. A substantially reduced leakage current (10-7-10-9 A) and higher endurance of the reverse current pulse are found. As compared with the conventional LED without the SL structure, the significant enhancement of 25.4% in output power and the increment of 5% in external quantum efficiency are observed.  相似文献   

4.
张洁 《半导体技术》2017,42(9):706-710
研究了在图形蓝宝石衬底(PSS)上利用磁控溅射制备AlN薄膜的相关技术,随后通过采用金属有机化学气相沉积(MOCVD)在相关AlN薄膜上生了长GaN基LED.通过一系列对比实验,分析了AlN薄膜的制备条件对GaN外延层晶体质量的影响,研究了AlN薄膜溅射前N2预处理功率和溅射后热处理温度对GaN基LED性能的作用机制.实验结果表明:AlN薄膜厚度的增加,导致GaN缓冲层成核密度逐渐升高和GaN外延膜螺位错密度降低刃位错密度升高;N2处理功率的提升会加剧衬底表面晶格损伤,在GaN外延膜引入更多的螺位错;AlN热处理温度的升高粗化了表面并提高了GaN成核密度,使得GaN外延膜螺位错密度降低刃位错密度升高;而这些GaN外延膜位错密度的变化又进一步影响到LED的光电特性.  相似文献   

5.
针对以蓝宝石为衬底的GaN基发光二极管出现的电流扩展不均的问题,采用有限元方法建立了GaN基发光二极管的三维网络模型,并对四种常见结构的器件进行数值模拟,发现影响二极管电流的因素不仅与发光二极管电极的位置有关,而且依赖于器件的结构参数.以电流扩展不均为指标确定出这四种器件中最佳的电极位置分布,同时对最佳电极位置分布的器件进行了结构参数优化,结果表明当p型金属层方块电阻与n型GaN的方块电阻接近时,电流扩展均匀性最好,且p-GaN的接触电阻和厚度越小,电流扩展越不均匀.  相似文献   

6.
文章基于LED芯片和LED单灯的工作原理和制程工艺,探讨了LED芯片封装以后正向电压K升高和降低的常见原因,并提出了改善措施。对于GaN基双电极芯片,由于芯片工艺制程或后续封装工艺因素,造成芯片表面镀层(ITO或Ni/Au)与P—GaN外延层之间的结合被破坏,欧姆接触电阻变大。对于GaAS基单电极芯片,由于封装材料和工艺因素,导致芯片背金(N—electrode)与银胶,或银胶与支架之间的接触电阻变大,从而LED正向电压VF升高。LED正向电压VF降低最常见的原因为芯片PN结被ESD或外界大电流损伤或软击穿,反向漏电过大,失去了二极管固有的I-V特性。  相似文献   

7.
垂直结构GaN基LEDs电流分布计算分析   总被引:2,自引:0,他引:2  
电流分布是影响大功率LEDs器件性能的重要因素,与传统结构GaN基器件比较,垂直结构器件通过采用上下电极分布,明显改善了LEDs器件内部电流分布均匀性。通过理论分析与数值计算,建立起了垂直结构GaN基LEDs电流分布模型,研究了垂直结构GaN基LEDs电流分布及I-V特性。结果表明,与传统平面结构比较,垂直结构GaN基LEDs的电流分布均匀性得到了明显改善,同时正向电压降低约7%。最后,通过晶片键合与激光剥离技术,制备了垂直结构GaN基LEDs,测试结果表明,实验结果和理论计算值相吻合。该结果对GaN基LEDs器件的优化设计具有重要指导意义。  相似文献   

8.
热超声倒装焊在制作大功率GaN基LED中的应用   总被引:2,自引:0,他引:2  
设计了适合于倒装的大功率GaN基LED芯片结构,在倒装基板硅片上制作了金凸点,采用热超声倒装焊接(FCB)技术将芯片倒装在基板上.测试结果表明获得的大面积金凸点连接的剪切力最高达53.93 g/bump,焊接后的GaN基绿光LED在350 mA工作电流下正向电压为3.0 V.将热超声倒装焊接技术用于制作大功率GaN基LED器件,能起到良好的机械互连和电气互连.  相似文献   

9.
With an n-AlGaN(4 nm)/GaN(4 nm) superlattice(SL) inserted between an n-GaN and an InGaN/GaN multiquantum well active layer,the efficiency droop of GaN-based LEDs has been improved.When the injection current is lower than 100 mA,the lumen efficiency of the LED with an n-AlGaN/GaN SL is relatively small compared to that without an n-AlGaN/GaN SL.However,as the injection current increases more than 100 mA,the lumen efficiency of the LED with an n-AlGaN/GaN SL surpasses that of an LED without an n-AlGaN/GaN SL. The wall plug efficiency of an LED has the same trend as lumen efficiency.The improvement of the efficiency droop of LEDs with n-AlGaN/GaN SLs can be attributed to a decrease in electron leakage due to the enhanced current spreading ability and electron blocking effect at high current densities.The reverse current of LEDs at -5 V reverse voltage decreases from 0.2568029 to 0.0070543μA,and the electro-static discharge(ESD) pass yield of an LED at human body mode(HBM)-ESD impulses of 2000 V increases from 60%to 90%.  相似文献   

10.
采用金属键合技术结合激光剥离技术将GaN基LED从蓝宝石衬底成功转移到Si衬底上。利用X射线光电子谱(XPS)研究不同阻挡层对Au向GaN扩散所起的阻挡作用,确定键合所需的金属过渡层。利用多层金属过渡层,在真空、温度400℃和加压300 N下实现GaN基LED和Si的键合,通过激光剥离技术将蓝宝石衬底从键合结构上剥离下来,形成GaN基LED/金属层/Si结构。用金相显微镜及原子力显微镜(AFM)观察结构的表面形貌,测得表面粗糙度(RMS)为12.1 nm。X射线衍射(XRD)和Raman测试结果表明,衬底转移后,GaN基LED的结构及其晶体质量没有发生明显变化,而且GaN与蓝宝石衬底间的压应力得到了释放,使得Si衬底上GaN基LED的电致发光(EL)波长发生红移现象。  相似文献   

11.
光提取效率的提高对GaN基蓝光LED的广泛应用有重要的影响.计算了以Ni/Au基金属化方法形成的p型GaN电极的折射率,通过分析电极层中的能流传输情况在电极上设计高折射率的耦合层来减少电极层对光的吸收以及提高光的透射,耦合层通过采用圆台结构来减少光在空气/耦合层界面上的全反射以提高GaN基蓝光LED的光提取效率.应用传输矩阵法计算的结果表明,光学厚度为π/2,折射率为2.02的ITO耦合层能使450 nm的蓝光在膜系上的透射率提高到75%.  相似文献   

12.
LED电极结构极大地影响着LED芯片的电流扩展能力,优化电极结构,能够缓解电流拥挤现象.讨论了正装LED结构和倒装LED结构的电流分布模型,并通过SimuLED软件研究了电极结构对LED电流扩展能力的影响.仿真结果表明:采用插指型电板结构极大提高了正装LED的电流扩展能力,电极下方插入电流阻挡层(CBL)后改变了芯片的电流分布状况,有利于光效的提升;而倒装LED的通孔式双层金属电极结构利用两层金属的互联作用,使n电极能够在整个芯片范围内均匀分布,进一步提高了电流扩展性能.  相似文献   

13.
We present GaN-based high electron mobility transistors (HEMTs) with a 2-nm-thin InAlN/AlN barrier capped with highly doped n++ GaN. Selective etching of the cap layer results in a well-controllable ultrathin barrier enhancement-mode device with a threshold voltage of +0.7 V. The n++ GaN layer provides a 290-Omega/square sheet resistance in the HEMT access region and eliminates current dispersion measured by pulsed IV without requiring additional surface passivation. Devices with a gate length of 0.5-mum exhibit maximum drain current of 800 mA/mm, maximum transconductance of 400 mS/mm, and current cutoff frequency fT of 33.7 GHz. In addition, we demonstrate depletion-mode devices on the same wafer, opening up perspectives for reproducible high-performance InAlN-based digital integrated circuits.  相似文献   

14.
《Microelectronics Reliability》2015,55(11):2263-2268
We present a detailed study on the optimization of rapid thermal annealing (RTA) on GaN-based light emitting diodes (LEDs). 14 mil × 28 mil GaN-based LED chips are fabricated with indium tin oxide (ITO) layer treated by RTA under various temperatures and times. Through the optical and electrical property analyses of ITO film, it is found that the transmittance and sheet resistance are improved after RTA process due to the better ITO crystallization and bigger grain size, compared with ITO treated by conventional furnace annealing. By employing electroluminescence measurement for the LED chips with RTA treatment, the forward voltage is found to be low as a result of low sheet resistance and contact resistance, and light output power (LOP) is high due to high ITO transmittance and good current density uniformity. Under RTA temperature of 550 °C and time of 3 min, the optimized LOP and forward voltage at 60 mA injection current are 71.2 mW and 2.97 V, respectively. Moreover, the reliability of the chips with RTA is better than those with furnace annealing.  相似文献   

15.
This work reports the fabrication of via-thin-film light-emitting diode (via-TF-LED) to improve the light output power (LOP) of blue/white GaN-based LEDs grown on Si (111) substrates.The as-fabricated via-TF-LEDs were featured with a roughened n-GaN surface and the p-GaN surface bonded to a wafer carrier with a silver-based reflective electrode,together with an array of embedded n-type via pillar metal contact from the p-GaN surface etched through the multiple-quantum-wells (MQWs) into the n-GaN layer.When operated at 350 mA,the via-TF-LED gave an enhanced blue LOP by 7.8% and over 3.5 times as compared to the vertical thin-film LED (TF-LED) and the conventional lateral structure LED (LS-LED).After covering with yellow phosphor that converts some blue photons into yellow light,the via-TF-LED emitted an enhanced white luminous flux by 13.5% and over 5 times,as compared with the white TF-LED and the white LS-LED,respectively.The significant LOP improvement of the via-TF-LED was attributed to the elimination of light absorption by the Si (111) epitaxial substrate and the finger-like n-electrodes on the roughened emitting surface.  相似文献   

16.
A correlation model between micro plasma noise and gamma irradiation of GaN-based LED is built.The reverse bias I-V characteristics and micro-plasma noise were measured in it,before and after Gamma irradiation.It is found that even after 30 krad Gamma irradiation,the GaN-based LED has soft breakdown failure.The reverse soft breakdown region current local instability of this device before irradiation is analyzed by the microplasma noise method.The results were obtained that if the GaN-based LED contained micro-plasma defects,it will fail after low doses (30 krad) of gamma irradiation.The results clearly reflect the micro-plasma defects induced carriers fluctuation noise and the local instability of GaN-based LED reverse bias current.  相似文献   

17.
We review the failure modes and mechanisms of gallium nitride (GaN)-based light-emitting diodes (LEDs). A number of reliability tests are presented, and specific degradation mechanisms of state-of-the-art LED structures are analyzed. In particular, we report recent results concerning the following issues: 1) the degradation of the active layer induced by direct current stress due to the increase in nonradiative recombination; 2) the degradation of LEDs submitted to reverse-bias stress tests; 3) the catastrophic failure of advanced LED structures related to electrostatic discharge events; 4) the degradation of the ohmic contacts of GaN-based LEDs; and 5) the degradation of the optical properties of the package/phosphors system of white LEDs. The presented results provide important information on the weaknesses of LED technology and on the design of procedures for reliability evaluation. Results are compared with literature data throughout the text.  相似文献   

18.
GaN-based LEDs with photonic crystal (PhC) patterns on an n- and a p-GaN layer by nano-imprint lithography (NIL) are fabricated and investigated. At a driving current of 20 mA on Transistor Outline (TO)-can package, the light output power of the GaN-based LED with PhC patterns on an n- and a p-GaN layer is enhanced by a factor of 1.30, and the wall-plug efficiency is increased by 24%. In addition, the higher output power of the LED with PhC patterns on the n- and p-GaN layer is due to better crystal quality on n-GaN and higher scattering effect on p-GaN surface using PhC pattern structure.  相似文献   

19.
单片集成式氮化镓基发光二极管的设计与制造   总被引:1,自引:1,他引:0  
We report a new monolithic structure of GaN-based light-emitting diode(LED) which can be operated under high voltage or alternative current. Differing from the conventional single LED chip, the monolithic lightemitting diode(MLED) array contains microchips which are interconnected in series or parallel. The key chip fabrication processing methods of the monolithic LED array include deep dry etching, sidewall insulated protection, and electrode interconnection. A 12 V GaN-based blue high voltage light emitting diode was designed and fabricated in our experiment. The forward current-voltage characteristics of MLEDs were consistent with those of conventional single junction light emitting diodes.  相似文献   

20.
100lm/W照明用LED大功率芯片的产业化研究   总被引:1,自引:0,他引:1  
本研究基于蓝宝石图形衬底(PSS)制备GaN基40mil功率型LED芯片,结合版图的优化,改善了电流扩展效应,系统研究了LED器件的光电性能。制备的LED外延片波长集中在6nm范围内,半峰宽接近20nm,LED功率型芯片使用优化的版图设计,在0.01mA下有良好的点亮效果,没有暗区,器件在350mA下发光效率达104 lm/W,并能够满足3W的应用市场,此外,器件具有良好的可靠性和稳定性,350mA和700mA下老化1,000hr光衰分别为-0.4%和2.8%,并成功解决了产业化的关键技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号