共查询到19条相似文献,搜索用时 109 毫秒
1.
针对动态电压补偿器(DVR)在风电机组低电压穿越(LVRT)的应用进行了讨论。为了提高DVR的动态响应能力,设计了双闭环控制策略,并引入电网电压前馈项,以避免补偿电压的过冲;电压外环采用了谐振控制器,可在静止坐标系下实现无静差跟踪,省略了坐标变换以及锁相环节。同时详细分析了DVR在正常运行与跌落情况下无功补偿能力,通过对其补偿方式的分类与比较,指出了其无功补偿能力受到限制的原因。在Matlab/SIMULINK中构建仿真模型,仿真结果表明,所设计的控制策略能够迅速精准地补偿定子电压,减小了定子电流冲击,平稳地实现了机组的低电压穿越。最后在110 kW的电机平台上进行了实验验证。 相似文献
2.
3.
DFIG风电机组串联耦合补偿低压穿越研究 总被引:1,自引:0,他引:1
双馈风电机组(doubly fed induction generator,DFIG)在电网电压故障以及故障恢复作用下的磁链变化将导致转子过电压或过电流,威胁转子侧的变换器。采用串联耦合补偿(series coupled compensation,SCC)的新型电压穿越方案,SCC通过耦合变压器串接在发电机输入端,它能克服电网多种故障对风电系统的影响。提出的控制策略有如下优势:能削弱故障下机组定子、转子电流暂态成分,克服了定、转子绕组不平衡发热的问题,延长了风电机组使用寿命;在电网故障下发电机组仍能平稳输出有功、无功功率;在整个故障运行过程中,DFIG系统转子侧变换器始终可控,从而为故障电网提供无功功率支持成为可能。在电网对称和非对称故障条件下,采用PSCAD/EMTDC建立了1MW DFIG风力发电系统模型,仿真结果表明该控制方案可以提高DFIG的故障穿越能力。 相似文献
4.
5.
双馈风力发电系统采用传统直接功率控制时,在发生低电压穿越(LVRT)后转子电流振荡较大,易引起Crowbar再动作。建立传统直接功率控制下双馈风力发电系统的模型,对矢量控制和直接功率控制抑制LVRT的效果进行分析,在此基础上提出一种改进型直接功率控制方法。引入谐振调节器消除定子磁链动态分量对转子磁链的作用,抑制Crowbar切除后转子电流的动态分量,从而改善双馈风电机组LVRT特性。仿真比较验证了所提控制方法应用于双馈风力发电系统的可行性,该控制方法比矢量控制使系统更快恢复稳定,且比传统直接功率控制对转子电流振荡抑制效果更明显。 相似文献
6.
由于电网中电压凹陷发生的时间不多,动态电压恢复器(DVR)通常都处于备用状态。为了提高动态电压恢复器的效率,提出了静止坐标下的谐振控制器,避开复杂的坐标变换方法简单地检测出指定次数的谐波。应用这种静止坐标下的谐振控制器对指定次数的谐波电压进行闭环控制,使DVR具备补偿谐波电压的功能,而对基本DVR的电压凹陷补偿性能的影响很小。还提出了应用δ算子实现谐振控制的途径,提高了DVR的效率。通过M ATLAB仿真表明该方法可以消除指定次数谐波的绝大部分。 相似文献
7.
面对短路故障引起的电压大幅跌落,为避免直接脱网对电网造成的不利影响,双馈感应风电(DFIG)机组多采用撬棒保护电路(Crowbar)实现低电压穿越(LVRT)功能。文章利用磁链平衡原理对含Crowbar电路的DFIG三相短路电流简化表达式进行推导,提出旁路阻值的优化整定方法。为验证整定方法的有效性及Crowbar退出时间对LVRT性能的影响,利用PSCAD/EMTDC平台对电压骤降情况下DFIG的LVRT性能进行了一系列仿真分析,结果表明:在确保网侧变流器正常工作的前提下,Crowbar阻值在整定范围内取偏大值且Crowbar在故障清除1个周波后退出运行,会使DFIG得到更好的LVRT效果。 相似文献
8.
动态电压恢复器比例谐振控制 总被引:1,自引:2,他引:1
针对动态电压恢复器(DVR)的快速和精确电压补偿问题,提出一种基于比例谐振控制的DVR双环反馈控制策略,电压外环将电容电压和指令输出电压比较,得到的电压偏差信号经过比例谐振控制器,控制器输出信号交给电流内环处理,而电流反馈内环采用简单比例控制以保证系统的快速性.将比例谐振控制器应用于DVR输出补偿电压控制策略中,可实现对指令补偿电压信号的无静差跟踪.在比例谐振控制器频率特性分析的基础上,详细分析离散域下引入控制延时的DVR反馈环控制系统.分析表明电流内环具有可靠的稳定性,作用于电压外环的比例谐振控制保证了系统的稳态精度,以及对负载电流的抗干扰能力,整个控制系统具有良好的动态和稳态性能.仿真结果验证了理论分析的正确性和所设计方法的有效性. 相似文献
9.
10.
双馈(DFIG)风电机组低电压穿越(LVRT)是风电厂并网运行的重要条件,提出了一种集成Crowbar硬件电路与网侧变流器不对称加强控制的LVRT综合控制策略。该策略中Crowbar优化投切判据根据电网故障类型自动判断投入切出时间,具有更强的灵活性及适用性;网侧变流器(GSC)在改进不对称预测电流控制的基础上增加了无功输出补偿控制,具有控制模型精确、控制效果好、具备无功支撑能力的特点。采用RTDS(实时数字仿真器)和自主开发的DSP控制器,开发了DFIG风电机组LVRT的数字/物理混合实时仿真系统,并对一台2 MW风电机组进行了电网三相短路与两相短路下的LVRT数字/物理混合实时仿真,验证了所提综合策略的正确性和混合仿真方案的有效性。 相似文献
11.
12.
针对Crowbar传统控制策略的不足,推导了双馈风力发电机(DFIG)在系统发生三相短路且转子Crowbar电路切除后的转子电流表达式,并提出了一种转子Crowbar自适应切除控制策略。假设当前时刻切除Crowbar,实时计算将出现的转子电流最大值,并在该最大值小于Crowbar动作阈值时将Crowbar切除,保证以Crowbar不会反复投切为前提尽早切除Crowbar,达到从系统少吸收无功和延长Crowbar开关器件使用寿命的目的。通过MATLAB/Simulink仿真验证了所提控制方法的有效性。 相似文献
13.
风机采用最大功率追踪控制时无功率备用量,当系统供需发生变化时,易对系统稳定性造成较大影响。提出了一种风场变利用率的有功功率分配策略,在满足系统调度命令的同时,减少风能的损失,提高风能利用率。考虑到风场的尾流效应,所提方案通过改变每台风力机的利用率来控制风机的有功功率输出。其中,每台风力机的利用率根据其自身转速而自适应调整。当风机转速较高时,风力机的利用率则较高。当风机转速较低时,则降低风力机的利用率,这样风电场可存储更多的旋转动能,可在系统需要时释放回系统。通过在基于双馈风机的风电场中对所提变利用率策略进行研究,结果表明,在满足调度需求的同时,所提控制策略比传统的等利用率方案更加节能。 相似文献
14.
风电场低电压穿越能力对接入系统的暂态稳定性有着重要影响。分析双馈感应风力发电机的励磁控制原理,在此基础上研究风电机组基于电流解耦的矢量控制策略以及故障期间转子侧变流器Crowbar(撬棒)滞环保护方案和网侧变流器的电压支撑技术。运用PSCAD/EMTDC仿真工具研究常规同步发电机和双馈风力发电机2种类型机组在短时间和长时间短路故障时的暂态响应特性,并探讨变流器参数对风电机组性能的影响。结果表明:变流器紧急应对措施可以使风机迅速恢复控制能力,从而通过灵活地调节其转子磁链矢量的幅值和相角使电压快速重建;此外,选择合适的直流侧电容容量将增强不对称故障情况下网侧变流器抵抗负序电流的能力。 相似文献
15.
随着大容量风电场集中接入电网,有必要研究含不同风电机组参数和类型的风电场暂态特性及对电网的影响。在分析笼型异步和双馈异步风电机组暂态模型的基础上,分别建立了含不同风电机组的风电场容量加权等值模型。从风电机组不同容量比、风电场不同短路容量比以及电网联络线不同阻抗比角度,对含不同风电机组的风电场暂态运行特性进行仿真。仿真结果表明:在电网接受风能容量一定的条件下,双馈异步风电机组装机容量比例提高以及风电场短路容量比和联络线阻抗比的降低,都可以提高和改善风电场出口处电压和机组的暂态稳定性。 相似文献
16.
本文结合矩阵变换器、双馈感应电机(DFIG)风力发电系统的优点,导出了双馈电机风力发电系统在同步旋转dq坐标轴下的矢量控制数学模型;针对常规矢量控制中存在电流耦合情况,设计一种新型、简易的电流前馈解耦控制方案.在此基础上,建立基于矩阵变换器交流励磁磁场定向电流解耦矢量控制策略.MATLAB仿真结果表明,当有功、无功功率变化时,电流解耦控制具有良好动态性能.本文设计了11kW风力发电试验装置并进行离、并网实验,当双馈电机处于亚同步、超同步状态时,双馈电机定子电压和频率均能保持稳定,实现变速恒频运行.实验结果表明,基于矩阵变换器交流励磁双馈风力发电系统是可行的,并具有一定的实用价值. 相似文献
17.
基于最小能量法的DVR控制算法 总被引:2,自引:1,他引:2
考虑动态电压恢复器(DVR)在不同的补偿方式下对装置的能量要求不同,针对如何实现DVR最小能量补偿进行研究,将电压补偿情况分为7种(5种为电压暂降情况,2种为电压突升情况),并根据每种情况的各自幅值、相角特点,计算DVR输出的补偿电压的幅值和相角,并给出最小能量补偿的依据.同时,在DVR传统结构上进行改进,以最新的三单相独立补偿取代传统的三相同时补偿,形成3个独立的充电电路、储能电容和输出补偿电路,提高了DVR的响应速度和精度,而且增加了抑制电压突升的功能.在Matlab/Simulink仿真软件下进行的单相电压跌落补偿试验,仿真结果显示,所提的补偿算法在不同电压突变情况下,均可对系统进行恰当的电压补偿,并能保证DVR消耗的能量最小. 相似文献
18.
电网电压跌落引起双馈感应风电机组(double fed induction generator,DFIG)定子电压跌落,造成DFIG定子磁链振荡,从而引起定、转子产生较大的振荡电流,特别是对双脉冲宽度调制(pulse width modulation,PWM)变换器产生极大的危害。若不采取有效的低电压穿越(low voltage ride through,LVRT)控制措施,将会导致DFIG从电网解列,危及电力系统安全运行。提出一种直流侧的低电压穿越技术,通过在DFIG背靠背变流器直流母线电容上加装超级电容储能系统,利用其功率密度大、充电时间短、使用寿命长、温度特性好等特点,来进行短时大功率充放电,在电网电压跌落、直流侧电压波动期间,将能量储存在超级电容中,同时也可以释放多余的能量补偿直流侧电压,从而有效地提升DFIG低电压故障的耐受能力,实现DFIG的低电压穿越。建立了3 MW风力发电机仿真模型,根据相应的计算原则确定配置7.65 F的超级电容器,当电压跌落50%且故障时间一直持续,超级电容可以控制机组维持稳定运行15 s,验证了超级电容提高风电机组低电压穿越能力的有效性。 相似文献
19.
新能源发电技术在电力系统中逐渐占据越来越大的比重。为了实现电力系统安全运行的稳定性,需要了解系统故障的影响,根据双馈风力发电机的撬棒动作情况以及相关暂态特性完成短路电流计算。通过建立双馈风力发电机模型,并根据双馈风力发电机在三相短路故障期间投入的撬棒保护,对风机内在机理的动态变化进行分析,精确计算定转子磁链在故障期间的变化情况,从而得到撬棒动作时的新三相短路电流计算方法。最后通过PSCAD/EMTDC 进行仿真验证,并利用Matlab检验计算方法的精确度。同时根据风场的低电压穿越能力与电流保护装置的特性,提出一种针对双馈风电场的低电压穿越保护方案。该方案根据低电压穿越能力的电压变化要求以及短路电流的大小协作完成对线路的保护,以便清除故障后风场电压可以及时恢复并且保持并网运行,且在一定程度上可应对低电压穿越能力的延时问题。 相似文献