首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 57 毫秒
1.
基于受限信任关系和概率分解矩阵的推荐   总被引:5,自引:0,他引:5       下载免费PDF全文
现有的推荐算法很难对没有任何记录的冷启动用户或者历史记录稀疏的用户给出准确的推荐,即用户的冷启动问题.本文提出一种基于受限信任关系和概率分解矩阵的推荐方法,由不信任关系约束信任关系的传播,得到准确且覆盖全面的用户信任关系矩阵,并通过对用户信任关系矩阵和用户商品矩阵的概率分解联合用户信任关系和用户商品矩阵信息,为用户给出推荐.实验表明该方法对冷启动用户和历史记录稀疏的用户的推荐效果有较大幅度的提升,有效地解决了用户的冷启动问题.  相似文献   

2.
《信息技术》2018,(2):95-99
传统的矩阵分解算法过分依赖于用户-评分矩阵,导致推荐的准确性不高。为了进一步提高推荐的准确性,文中提出了一种基于Item-User网络的概率矩阵分解推荐算法。该算法不仅通过有向图和信任关系的传递性对用户信任矩阵进行改进,而且引入了物品相似矩阵,全面考虑用户与项目的关系,并对这三个矩阵建立联合概率分解模型。最后构建目标函数,通过最小二乘法求出误差值和预测评分。实验结果表明,该算法相对其他算法有较好的预测结果和解释机制。  相似文献   

3.
在对协同过滤问题的研究中,矩阵分解是一类非常重要的模型,在Netflix竞赛中取得了迄今最好的结果。在本文的研究中,我们将对矩阵分解的基本模型和基本假设进行较为全面的总结。我们期望通过本文的工作,能推进矩阵分解这一方法在中国电信的各类推荐业务系统中的应用。  相似文献   

4.
冯霞  张晨  卢敏 《现代电子技术》2020,(4):78-82+86
分析理解民航旅客出行特征,对旅客未来潜在出行行为进行预测,是航空公司实施精准营销的重要支撑。该文以民航领域积累的大规模PNR数据集为基础,提出一种基于旅客信任网络的协同过滤航线推荐模型,借鉴社交关系网络引入旅客信任网络,对采用协同过滤进行航线推荐的方法进行改进,通过旅客信任网络中信任的传递性以发现相似旅客,从自身偏好和相似旅客偏好两个方面对旅客出行时对航空公司航线的选择行为进行刻画。实验结果表明,文中算法相较于传统的基于历史选择、基于航线热度等方法有更高的精准度和召回率。  相似文献   

5.
推荐系统已成为电子商务企业吸引客户、实现盈利的有效技术支持,它能够根据用户的网络点击数据预测其偏好,做出个性化推荐。研究了一个基于动态矩阵分解模型的NETFLIX电影推荐系统。该系统通过训练一个来自NETFLIX平台、包含9 000部电影历史评分的数据集进行预测评分。核心算法包括运用矩阵分解(Matrix Factorization, MF)建立有效的数据处理模型,以及使用随机梯度下降(Stochastic Gradient Descent, SGD)训练该模型。数据集采用稀疏矩阵存储,以节省空间。在训练过程中,对预测评分增加了特定的偏向值。该系统与市场同类产品相比拥有更高的预测准确度,并向电影观众推荐符合他们喜好的电影,能极大地提高电影观看票房值。  相似文献   

6.
7.
在协同过滤推荐系统中,矩阵分解是一种非常有效的工具。贝叶斯概率矩阵分解模型具有预测精度高的优点,但不能表示潜在因子之间的非线性关系。针对该问题,该文提出一种基于Logistic函数的改进贝叶斯概率矩阵分解模型,并使用马尔科夫链蒙特卡罗方法进行训练。在两组真实数据集合上的实验表明,基于Logistic函数的贝叶斯概率矩阵分解算法能够明显提高预测准确性,有效缓解数据稀疏性问题。  相似文献   

8.
基于社会信任网络的协同过滤推荐算法存在节点之间多下一跳带来的复杂路径选择和信任弱传递问题。针对这2个问题,给出基于项目的一跳信任模型,该模型通过用户对项目信任度的计算,定义用户的直接和间接社会信任属性,然后一步跳转计算用户之间的直接和间接信任距离,进而计算用户之间的信任度。基于此模型设计推荐算法,同时分析了信任度与传统相似度的理论关系并二维拟合。仿真实验表明,该算法提高了推荐准确度(约0.02 MAE),降低了训练时间(约50%)。  相似文献   

9.
王萌萌  左万利  王英 《电子学报》2016,44(10):2391-2397
本文针对在线微博,首先,基于带权动态链接预测特征集合,以用户社会关系因子约束目标函数,从用户概要和用户发布内容两个维度利用非负矩阵分解方法预测社会网络中链接的存在性和方向性.然后,在真实的数据集上验证了提出框架的有效性,并通过实验进一步证明了特征权重和时间信息在链接预测问题中的重要性.  相似文献   

10.
任开旭  王玉龙  刘同存  李炜 《电子学报》2019,47(9):1848-1854
协同过滤作为推荐系统核心技术,面临严重的评分数据稀疏性问题.融合物品文本信息可以有效的解决数据稀疏性问题,然而,目前的方法侧重于提取文本的单维特征,忽略了物品语义表示的多维特性.深度挖掘物品内容的多维特性可以更加精细化描述物品的语义信息,有助于提升推荐效果.为此,本文提出基于胶囊网络的概率生成模型.模型利用胶囊网络挖掘文本的多维语义特征,并以正则化方式融入概率矩阵分解框架,建立用户与物品之间的内在关系.实验结果表明本文提出的模型具有更高的评分预测精度.  相似文献   

11.
肖云鹏  孙华超  戴天骥  李茜  李暾 《电子学报》2018,46(7):1762-1767
本文针对评分预测中用户评分主观性及评分数据稀疏带来的预测不准确问题,围绕社交推荐的特点,设计实现一种社交网络评分预测方法.首先,针对评分主观性问题,引入并优化相关云模型理论,提出采用综合云模型生成评分标准并转化用户评分的方法.其次,针对预测不准确问题,通过引入隶属度达到数据降维和目标用户定位的作用,同时考虑到社交网络用户关系对评分结果的影响,分别利用社交关系及相似群体建立两个评分预测模型,并基于高斯变换融合两部分预测结果生成预测评分.实验表明,该方案不仅克服了用户评分主观性,同时有效改善了用户评分数据稀疏情况下传统预测方法准确度偏差的问题.  相似文献   

12.
鲍长春  白志刚 《信号处理》2020,36(6):791-803
语音增强在语音信号处理领域举足轻重,其目的在于减少背景噪声对语音信号的影响。然而,如何从极度非平稳噪声环境下有效地分离出目标语音仍然是一个具有挑战性的问题。基于非负矩阵分解(Nonnegative matrix factorization, NMF)的语音增强算法利用非负的语音和噪声基矩阵来建模语音和噪声的频谱子空间,是目前一种先进的对抑制非平稳噪声非常有效的技术。本文首先详细地介绍了非负矩阵分解理论,包括非负矩阵分解模型,代价函数(Cost function)的定义以及常用的乘法更新准则(Multiplicative update rules)。然后,本文详细地介绍了基于非负矩阵分解的语音增强方法的基本原理,包括训练阶段和增强阶段的具体过程,并进行了实验,此外,还利用一个基于非负矩阵分解的语音重构实验验证了语音基矩阵对语音频谱的建模能力。最后,本文总结了传统的基于非负矩阵分解的算法的不足,并对一些现有的基于非负矩阵分解的算法分别做了一个简单的概述,包括其创新点和优缺点,并对比分析了几种具有代表性的方法。本文从历史的角度展示了基于非负矩阵分解的语音增强方法的不断发展。  相似文献   

13.
基于评分预测与排序预测的协同过滤推荐算法   总被引:2,自引:0,他引:2       下载免费PDF全文
李改  陈强  李磊 《电子学报》2017,45(12):3070-3075
协同过滤推荐算法在电子商务领域运用广泛.之前的研究要么仅从评分预测的角度来研究,要么仅从排序预测的角度来研究.为了兼顾这两个方面,本文在传统的基于评分预测的PMF(Probabilistic Matrix Factorization)算法和基于排序预测的xCLiMF(Extended Collaborative Less-is-More Filtering)算法的基础上提出了一种基于评分预测与排序预测的协同过滤推荐算法URA(Unified Recommendation Algorithm),该方法通过在PMF和xCLiMF算法中共享用户和推荐对象的特征空间,利用PMF算法来学习高精度的用户和推荐对象的特征向量,从而进一步增强排序推荐性能.实验验证,该方法在评价指标NDCG和ERR下均优于PMF和xCLiMF算法,且复杂度与评分点个数线性相关.URA算法可运用于互联网信息推荐领域的大数据处理.  相似文献   

14.
任剑  王新梅 《通信学报》1996,17(2):27-38
本文给出了基于矩阵分解的代数几何码的译码算法,该算法可对任意错误个数不超过[(d-1)/2]的接收码字进行译码,且该算法简单,便于理解与实现。  相似文献   

15.
从重叠比较严重的混合物三维荧光光谱中恢复单一光谱信号,是光谱解析的难点。考虑到光谱内在的非负性,采用非负矩阵分解的投影梯度和交替最小二乘两种算法,并结合K均值初始化方法,来解析菲、芘、蒽3种芳烃混合物的三维荧光光谱数据,有效避免出现负数的分解结果,提取3种成份的三维荧光光谱,得到计算光谱与对应参考光谱的相似系数均大于0.970。计算结果表明,非负矩阵分解能够克服光谱重叠带来的干扰,有效提取光谱成份,从而实现对菲、芘、蒽的成份识别。其中,交替最小二乘的NMF算法更适合实时在线监测。  相似文献   

16.
基于特征加权和非负矩阵分解的多视角聚类算法   总被引:2,自引:0,他引:2       下载免费PDF全文
刘正  张国印  陈志远 《电子学报》2016,44(3):535-540
为了在多视角聚类过程中同时考虑特征权重和数据高维性问题,提出一种基于特征加权和非负矩阵分解的多视角聚类算法(Multiview Clustering Algorithm based on Feature Weighting and Non-negative Matrix Factorization,FWNMF-MC).FWNMF-MC算法根据每个视角中每个特征在聚类过程中的重要性,自动赋予不同的权值.通过将每个视角空间中的特征矩阵分解为基矩阵与系数矩阵的乘积,将多视角数据从高维空间映射到低维空间.为了有效利用每个视角信息挖掘聚簇结构,最大化每个视角在低维空间的一致性.最后实验结果表明FWNMF-MC算法的聚类效果明显优于已有的4种有代表性的多视角聚类算法.  相似文献   

17.
汪洋  田钢  温淑鸿 《电视技术》2014,38(6):94-96
电视节目收视率预测是一种典型非线性预测,收视率在短时间内相对稳定。人工神经网络具有良好的容错性、自适应学习能力以及非线性映射能力,采用人工神经网络做收视率预测精度较高。基于BP神经网络建立了预测模型,并采用软件仿真的方式对预测过程以及预测结果进行分析,实验结果表明采用BP神经网络预测电视节目收视率是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号