首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
By combining ab initio calculations and experiments, we demonstrate how the band gap of the transition metal trichalcogenide TiS3 can be modified by inducing tensile or compressive strain. In addition, using our calculations, we predicted that the material would exhibit a transition from a direct to an indirect band gap upon application of a compressive strain in the direction of easy electrical transport. The ability to control the band gap and its nature could have a significant impact on the use of TiS3 for optical applications. We go on to verify our prediction via optical absorption experiments that demonstrate a band gap increase of up to 9% (from 0.99 to 1.08 eV) upon application of tensile stress along the easy transport direction.
  相似文献   

2.
Two-dimensional (2D) nanomaterials have gained tremendous attention in the field of biomedicine because of their high specific surface areas and fascinating physicochemical properties. Herein, 2D monolayered double hydroxide (MLDH) nanosheets were employed to localize doxorubicin (DOX), an anticancer drug, with a loading capacity of as high as 3.6 mg·mg–1 (w/w). Structural characterizations and theoretical calculations indicate that the DOX molecule is uniformly arranged and oriented at the surface of the MLDHs with a binding energy of 15.90 eV, showing significant electrostatic interaction. With the assistance of the targeting agent folic acid (FA), DOX-FA/MLDHs demonstrate targeted cellular uptake and superior anticancer behavior based on in vitro tests performed with cancer cells. In addition, this composite material exhibits a selective release toward cancer cells and good biocompatibility with normal cells, which would guarantee its practical applications in cancer therapy.
  相似文献   

3.
The development of an electrocatalyst based on abundant elements for the oxygen evolution reaction (OER) is important for water splitting associated with renewable energy sources. In this study, we develop an interconnected Ni(Fe)O x H y nanosheet array on a stainless steel mesh (SSNNi) as an integrated OER electrode, without using any polymer binder. Benefiting from the well-defined three-dimensional (3D) architecture with highly exposed surface area, intimate contact between the active species and conductive substrate improved electron and mass transport capacity, facilitated electrolyte penetration, and improved mechanical stability. The SSNNi electrode also has excellent OER performance, including low overpotential, a small Tafel slope, and long-term durability in the alkaline electrolyte, making it one of the most promising OER electrodes developed.
  相似文献   

4.
The size and density of Ag nanoparticles on n-layer MoS2 exhibit thicknessdependent behavior. The size and density of these particles increased and decreased, respectively, with increasing layer number (n) of n-layer MoS2. Furthermore, the surface-enhanced Raman scattering (SERS) of Ag on this substrate was observed. The enhancement factor of this scattering varied with the thickness of MoS2. The mechanisms governing the aforementioned thickness dependences are proposed and discussed.
  相似文献   

5.
The luminescence of semiconductor quantum dots (QDs) can be adjusted using the piezotronic effect. An external mechanical force applied on the QD generates a piezoelectric potential, which alters the luminescence of the QD. A small mechanical force may induce a significant change on the emission spectrum. In the case of InN QDs, it is demonstrated that the unforced emission wavelength is more than doubled by a force of 1 μN. The strategy of using the piezotronic effect to tune the color of the emission leads to promising noncontact forcemeasurement applications in biological and medical sensors and force-sensitive displays. Several piezoelectric semiconductor materials have been investigated in terms of the tunability of the emission wavelength in the presence of an external applied force. It is found that CdS and CdSe demonstrate much higher tunability δλF, which makes them suitable for micro/nano-newton force measurement applications.
  相似文献   

6.
C dots (CDs) have shown great potential in bioimaging and phototherapy. However, it is challenging to manipulate their fluorescent properties and therapeutic efficacy to satisfy the requirements for clinic applications. In this study, we prepared S, Se-codoped CDs via a hydrothermal method and demonstrated that the doping resulted in excitation wavelength-independent near-infrared (NIR) emissions of the CDs, with peaks at 731 and 820 nm. Significantly, the CDs exhibited a photothermal conversion efficiency of ~58.2%, which is the highest reported value for C nanostructures and is comparable to that of Au nanostructures. Moreover, the CDs had a large two-photon absorption cross section (~30,045 GM), which allowed NIR emissions and the photothermal conversion of the CDs through the two-photon excitation (TPE) mechanism. In vitro and in vivo tests suggested that CDs can function as new multifunctional phototheranostic agents for the TPE fluorescence imaging and photothermal therapy of cancer cells.
  相似文献   

7.
Gases that are widely used in research and industry have a significant effect on both the configuration of solid materials and the evolution of reactive systems. Traditional studies on gas–solid interactions have mostly been static and post-mortem and unsatisfactory for elucidating the real active states during the reactions. Recent developments of controlled-atmosphere transmission electron microscopy (TEM) have led to impressive progress towards the simulation of real-world reaction environments, allowing the atomic-scale recording of dynamic events. In this review, on the basis of the in situ research of our group, we outline the principles and features of the controlled-atmosphere TEM techniques and summarize the significant recent progress in the research activities on gas–solid interactions, including nanowire growth, catalysis, and metal failure. Additionally, the challenges and opportunities in the real-time observations on such platform are discussed.
  相似文献   

8.
Germanium-based oxide has been found to be a promising high-capacity anode material for lithium-ion batteries (LIBs). However, it exhibits poor electrochemical performance because of the drastic volume change during cycling. Herein, we designed porous Ge-Fe bimetal oxide nanowires (Ge-Fe-Ox-700 NWs) by a large-scale and facile solvothermal reaction. When used as the anode material for LIBs, these Ge-Fe-Ox-700 NWs exhibited superior electrochemical performance (~ 1,120 mAh·g?1 at a current density of 100 mA·g?1) and good cycling performance (~ 750 mAh·g?1 after 50 cycles at a current density of 100 mA·g?1). The improved performance is due to the small NW diameter, which allows for better accommodation of the drastic volume changes and zero-dimensional nanoparticles, which shorten the diffusion length of ions and electrons.
  相似文献   

9.
Environmental pollution is threatening human health and ecosystems as a result of modern agricultural techniques and industrial progress. A simple nanopaper-based platform coupled with luminescent bacteria Aliivibrio fischeri (A. fischeri) as a bio-indicator is presented here, for rapid and sensitive evaluation of contaminant toxicity. When exposed to toxicants, the luminescence inhibition of A. fischeri-decorated bioluminescent nanopaper (BLN) can be quantified and analyzed to classify the toxicity level of a pollutant. The BLN composite was characterized in terms of morphology and functionality. Given the outstanding biocompatibility of nanocellulose for bacterial proliferation, BLN achieved high sensitivity with a low cost and simplified procedure compared to conventional instruments for laboratory use only. The broad applicability of BLN devices to environmental samples was studied in spiked real matrices (lake and sea water), and their potential for direct and in situ toxicity screening was demonstrated. The BLN architecture not only survives but also maintains its function during freezing and recycling processes, endowing the BLN system with competitive advantages as a deliverable, ready-to-use device for large-scale manufacturing. The novel luminescent bacteria-immobilized, nanocelullose-based device shows outstanding abilities for toxicity bioassays of hazardous compounds, bringing new possibilities for cheap and efficient environmental monitoring of potential contamination.
  相似文献   

10.
Two-dimensional ZrS2 materials have potential for applications in nanoelectronics because of their theoretically predicted high mobility and sheet current density. Herein, we report the thickness and temperature dependent transport properties of ZrS2 multilayers that were directly deposited on hexagonal boron nitride (h-BN) by chemical vapor deposition. Hysteresis-free gate sweeping, metalinsulator transition, and T γ (γ ~ 0.82–1.26) temperature dependent mobility were observed in the ZrS2 films.
  相似文献   

11.
Hollow nanostructures have attracted considerable attention owing to their large surface area, tunable cavity, and low density. In this study, a unique flower-like C@SnO X @C hollow nanostructure (denoted as C@SnO X @C-1) was synthesized through a novel one-pot approach. The C@SnO X @C-1 had a hollow carbon core and interlaced petals on the shell. Each petal was a SnO2 nanosheet coated with an ultrathin carbon layer ~2 nm thick. The generation of the hollow carbon core, the growth of the SnO2 nanosheets, and the coating of the carbon layers were simultaneously completed via a hydrothermal process using resorcinol-formaldehyde resin-coated SiO2 nanospheres, tin chloride, urea, and glucose as precursors. The resultant architecture with a large surface area exhibited excellent lithium-storage performance, delivering a high reversible capacity of 756.9 mA·h·g–1 at a current density of 100 mA·g–1 after 100 cycles.
  相似文献   

12.
Layered double hydroxides (LDHs) have been widely used as catalysts owing to their tunable structure and atomic dispersion of high-valence metal ions; however, limited tunability of electronic structure and valence states have hindered further improvement in their catalytic performance. Herein, we reduced ultrathin LDH precursors in situ and topotactically converted them to atomically thick (~2 nm) two-dimensional (2D) multi-metallic, single crystalline alloy nanosheets with highly tunable metallic compositions. The as-obtained alloy nanosheets not only maintained the vertically aligned ultrathin 2D structure, but also inherited the atomic dispersion of the minor metallic compositions of the LDH precursors, even though the atomic percentage was higher than 20%, which is far beyond the reported percentages for single-atom dispersions (usually less than 0.1%). Besides, surface engineering of the alloy nanosheets can finely tune the surface electronic structure for catalytic applications. Such in situ topotactic conversion strategy has introduced a novel approach for atomically dispersed alloy nanostructures and reinforced the synthetic methodology for ultrathin 2D metal-based catalysts.
  相似文献   

13.
Herein, carbon nano-onions (CNOs) with different structures have been investigated as precursors for the synthesis of graphene quantum dots (GQDs). It was found that hollow CNOs yield GQDs with a uniform size distribution, whereas metal encapsulation in the CNO structure is disadvantageous for the same. Furthermore, the hollow CNOs are also advantageous for the synthesis of GQDs with a yellow-green hybrid luminescence and long-ranged excitation wavelength (λ ex)-independent photoluminescent (PL) behavior, in which the λ ex upper limit was 480 nm. These features enable safe sensing and cell tracking applications with a longer excitation wavelength in the visible light region. The potential applications of the synthesized GQDs as fluorescent sensing probes for detecting Cu(II) ions and non-toxic cell imaging under visible light excitation have been demonstrated. This means that sensing and bioimaging can be accomplished in the natural environment with no need for UV excitation. This work provides a reference to researchers in tailoring CNO structures in terms of their inner space to synthesize GQDs with the desired luminescence behavior.
  相似文献   

14.
One-dimensional hollow nanostructures have potential applications in many fields and can be fabricated using various methods. Herein, a selective-oxidation route for the synthesis of unique Te x Se y nanotubes (STNTs) with a controlled morphology using Te x Se y @Se core–shell nanowires (TSSNWs) as a template is reported. Because of the lower redox potential of TeO2/Te compared to that of H2SeO3/Se, the Te in TSSNWs can be preferentially oxidized by an appropriate oxidant of HNO2 to form STNTs. The inner diameters and wall thicknesses of the STNTs can be tuned by modulating the core diameters and shell thicknesses of the TSSNWs, respectively. The STNTs can be assembled into a monolayer composed of well-arranged nanotubes using the Langmuir–Blodgett technique. A device based on films stacked with 10 STNT monolayers was fabricated to investigate the photocoductivity of the STNTs. The STNTs exhibited a good photoresponse over the whole ultraviolet–visible spectrum, revealing their potential for application in optoelectronic devices.
  相似文献   

15.
Comprehensive understanding of the structural/morphology stability of ultrathin (diameter < 10 nm) gold nanowires under real service conditions (such as under Joule heating) is a prerequisite for the reliable implementation of these emerging building blocks into functional nanoelectronics and mechatronics systems. Here, by using the in situ transmission electron microscopy (TEM) technique, we discovered that the Rayleigh instability phenomenon exists in ultrathin gold nanowires upon moderate heating. Through the controlled electron beam irradiation-induced heating mechanism (with < 100 °C temperature rise), we further quantified the effect of electron beam intensity and its dependence on Rayleigh instability in altering the geometry and morphology of the ultrathin gold nanowires. Moreover, in situ high-resolution TEM (HRTEM) observations revealed surface atomic diffusion process to be the dominating mechanism for the morphology evolution processes. Our results, with unprecedented details on the atomic-scale picture of Rayleigh instability and its underlying physics, provide critical insights on the thermal/structural stability of gold nanostructures down to a sub-10 nm level, which may pave the way for their interconnect applications in future ultralarge- scale integrated circuits.
  相似文献   

16.
Although nanotechnology has led to important advances in in vitro diagnostics, the development of nanosensors for in vivo detection remains very challenging. Here, we demonstrated the proof-of-principle of in vivo detection of nucleic acid targets using a promising type of surface-enhanced Raman scattering (SERS) nanosensor implanted in the skin of a large animal model (pig). The in vivo nanosensor used in this study involves the “inverse molecular sentinel” detection scheme using plasmonics-active nanostars, which have tunable absorption bands in the near infrared region of the “tissue optical window”, rendering them efficient as an optical sensing platform for in vivo optical detection. Ex vivo measurements were also performed using human skin grafts to demonstrate the detection of SERS nanosensors through tissue. In this study, a new core–shell nanorattle probe with Raman reporters trapped between the core and shell was utilized as an internal standard system for self-calibration. These results illustrate the usefulness and translational potential of the SERS nanosensor for in vivo biosensing.
  相似文献   

17.
The in situ physicochemical analysis of nanostructured functional materials is crucial for advances in their design and production. X-ray coherent diffraction imaging (CDI) methods have recently demonstrated impressive potential for characterizing such materials with a high spatial resolution and elemental sensitivity; however, moving from the current ex situ static regime to the in situ dynamic one remains a challenge. By combining soft X-ray ptychography and single-shot keyhole CDI, we performed the first in situ spatiotemporal study on an electrodeposition process in a sealed wet environment, employed for the fabrication of oxygen-reduction catalysts, which are key components for alkaline fuel cells and metal-air batteries. The results provide the first experimental demonstration of theoretically predicted Turing–Hopf electrochemical pattern formation resulting from morphochemical coupling, adding a new dimension for the in-depth in situ characterization of electrodeposition processes in space and time.
  相似文献   

18.
A novel self-delivered prodrug system was fabricated for tumor-targeting therapy. In this nanosystem, the Arg-Gly-Asp-Ser (RGDS) tetrapeptide was used to improve the therapeutic index to integrin-overexpressing tumor cells. The antitumorous drug camptothecin was further appended to the ε-amino group of lysine by 20-O-succinyl linkage and controllably released via hydrolytic cleavage. Prodrug molecules self-assembled into fibrillar nano-architectures and achieved the capability of self-delivery after being injected subcutaneously into mice. Introduction of hydrophobic myristic acid favored the self-assembly and enhanced the cellular internalization of the prodrugs. In vitro and in vivo studies demonstrated that the self-assembled nanofibers could effectively target integrinoverexpressing tumorous cells and inhibit tumor growth via RGD-mediated specific targeting. Therefore, the traditional idea that fibrillar structures hold low therapeutic efficacy due to poor cell uptake can be challenged.
  相似文献   

19.
Curved Cu nanowire (CCN)-based high-performance flexible transparent conductive electrodes (FTCEs) were fabricated via a fully solution-processed approach, involving synthesis, coating, patterning, welding, and transfer. Each step involved an innovative technique for completing the all-solution processes. The high-quality and well-dispersed CCNs were synthesized using a multi-polyol method through the synergistic effect of specific polyol reduction. To precisely control the optoelectrical properties of the FTCEs, the CCNs were uniformly coated on a polyimide (PI) substrate via a simple meniscus-dragging deposition method by tuning several coating parameters. We also employed a polyurethane (PU)-stamped patterning method to effectively produce 20 μm patterns on CCN thin films. The CCN thin films exhibited high electrical performance, which is attributed to the deeply percolated CCN network formed via a solvent-dipped welding method. Finally, the CCN thin films on the PI substrate were partially embedded and transferred to the PU matrix to reduce their surface roughness. Through consecutive processes involving the proposed methods, a highly percolated CCN thin film on the PU matrix exhibited high optoelectrical performance (R s = 53.48 Ω/□ at T = 85.71%), excellent mechanical properties (R/R 0 < 1.10 after the 10th repetition of tape peeling or 1,000 bending cycles), and a low root-mean-square surface roughness (R rms = 14.36 nm).
  相似文献   

20.
A thermal emitter composed of a frequency-selective surface metamaterial layer and a hexagonal boron nitride-encapsulated graphene filament is demonstrated. The broadband thermal emission of the metamaterial (consisting of ring resonators) was tailored into two discrete bands, and the measured reflection and emission spectra agreed well with the simulation results. The high modulation frequencies that can be obtained in these devices, coupled with their operation in air, confirm their feasibility for use in applications such as gas sensing.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号