共查询到20条相似文献,搜索用时 0 毫秒
1.
Balasubramanian M. Polimeni J.R. Schwartz E.L. 《IEEE transactions on pattern analysis and machine intelligence》2009,31(6):1006-1016
We present two algorithms for computing distances along convex and non-convex polyhedral surfaces. The first algorithm computes exact minimal-geodesic distances and the second algorithm combines these distances to compute exact shortest-path distances along the surface. Both algorithms have been extended to compute the exact minimal-geodesic paths and shortest paths. These algorithms have been implemented and validated on surfaces for which the correct solutions are known, in order to verify the accuracy and to measure the run-time performance, which is cubic or less for each algorithm. The exact-distance computations carried out by these algorithms are feasible for large-scale surfaces containing tens of thousands of vertices, and are a necessary component of near-isometric surface flattening methods that accurately transform curved manifolds into flat representations. 相似文献
2.
提出一个解带权区间图的最短路问题的O(nα(n))时间新算法,其中n是带权区间图中带权区间的个数,α(n)是单变量Ackerman函数的逆函数,它是一个增长速度比log n慢得多的函数,对于通常所见到的n,α(n)≤4.本文提出的新算法不仅在时间复杂性上比直接用Dijkstra算法解带权区间图的最短路问题有较大改进,而且算法设计思想简单,易于理解和实现. 相似文献
3.
徐凤生 《计算机工程与科学》2006,28(2):83-85
本文提出了一种求最短路径的新算法,并用C语言设计相应的程序验证了此算法。实验表明,该算法能高效地求出一个顶点到其它各项点的所有最短路径。 相似文献
4.
5.
一种基于离散变权网络的动态最短路径快速算法 总被引:2,自引:0,他引:2
在离散变权动态网络中,求解最短路径的最优化算法的计算复杂性通常远大于O(n2),不适用于实时的动态交通信息导航系统。提出的动态最短路径快速算法,是在所有的当前点与下一个待选点之间以及待选点与目标点之间的动态弧的权值之和中选择一个最小值,然后把该待选点作为当前点继续选择下一个待选点,如此反复,直到达到目标点为止。该算法所得到的路径是一个次优解,但其执行时间却比寻找最优解算法要小得多,并且所得到的解要优于选择最短距离路径的动态解。实验结果证明这是一种适用于动态交通导航的有效算法。 相似文献
6.
最短路径问题应用广泛、实现多样。动态规划法能够有效计算出每对节点间的最短路径。本文利用VC++实现了动态规划法的每对节点间最短路径问题。 相似文献
7.
一种基于边序列的任意两点间最短路径算法 总被引:1,自引:3,他引:1
基于边序列信息,论文提出了一种新的求取任意两点间最短路径的算法:EBSP(EdgesBasedall-pairsShortestPathsAlgorithm)。该算法在算法时间复杂度上同Floyd算法相近,并在一定条件下相同;通过试验表明,在边数m满足m=c*n的情况下,EBSP算法速度约为Floyd算法的10倍到63倍。 相似文献
8.
9.
目前在不含负回路的网络中,对于求解任意两节点之间最短路问题的方法有很多,Floyd算法是最经典的算法之一,但随着节点数量的增加,重复的计算量也随之增大,从而降低了计算效率。为此,文中通过迭代矩阵和下标标注法对Floyd算法进行了改进,改进后的算法既能快速地计算出网络中任意两节点之间的最短路长值,又能更直观地找出最短路径。通过具体实例分析表明,Floyd改进算法减少了重复计算,简化了路径标注方法,提高了计算效率。 相似文献
10.
We describe algorithms for finding shortest paths and distances in outerplanar and planar digraphs that exploit the particular topology of the input graph. An important feature of our algorithms is that they can work in a dynamic environment, where the cost of any edge can be changed or the edge can be deleted. In the case of outerplanar digraphs, our data structures can be updated after any such change in only logarithmic time. A distance query is also answered in logarithmic time. In the case of planar digraphs, we give an interesting tradeoff between preprocessing, query, and update times depending on the value of a certain topological parameter of the graph. Our results can be extended to n -vertex digraphs of genus O(n 1-ε ) for any ε>0 . Received September 24, 1996; revised May 13, 1998, and January 20, 1999. 相似文献
11.
12.
Multiobjective Optimization: Improved FPTAS for Shortest Paths and Non-Linear Objectives with Applications 总被引:1,自引:0,他引:1
We provide an improved FPTAS for multiobjective shortest paths—a fundamental (NP-hard) problem in multiobjective optimization—along with a new generic method for obtaining FPTAS to any multiobjective optimization problem with non-linear objectives. We show how these results can be used to obtain better approximate solutions to three related problems, multiobjective constrained [optimal] path and non-additive shortest path, that have important applications in QoS routing and in traffic optimization. We also show how to obtain a FPTAS to a natural generalization of the weighted multicommodity flow problem with elastic demands and values that models several realistic scenarios in transportation and communication networks. This work was partially supported by the Future and Emerging Technologies Unit of EC (IST priority—6th FP), under contracts No. IST-2002-001907 (integrated project DELIS) and No. FP6-021235-2 (project ARRIVAL), and the Action PYTHAGORAS of the Operational Programme for Educational & Vocational Training II, with matching funds from the European Social Fund and the Greek Ministry of Education. 相似文献
13.
With the popularity of uncertain data, queries over uncertain graphs have become a hot topic in the database community. As one of the important queries, the shortest path query over an uncertain graph ... 相似文献
14.
网络最短路问题的改进算法 总被引:4,自引:0,他引:4
本文着重研究著名的Dijkstra网络最短路算法的实现效率,提出算法实现的若干技巧,大大提高了Dijkstra最短路算法的适用性和时间空间效率。 相似文献
15.
Cees Duin 《Algorithmica》2004,41(2):131-145
We formulate and study an algorithm for all-pairs
shortest paths in a network with $n $ nodes and $m $ arcs of
positive length. Using the dynamic programming principle of optimality of
subpaths the algorithm avoids redundant updates of distance labels. A shortest $v$--$w$ path, say $\langle v,
r_{1} , r_{2} , \ldots ,
r_{k } = w \rangle$ with $k $ arcs
($k \geq 1$), is only then combined with an arc
$(w,t) \in A$ to update the distance label of pair
$v$--$t$, if $(w,t) $ is present on the shortest
$r_{\ell } $--$ t$ path for each node
$r_{\ell}$ $(\ell=k- 1 , k- 2,
\ldots, 1) $.
The algorithm extracts shortest paths in order of length from a data structure
and builds two shortest path trees per node, an extra effort of
$O(n^{2})$. This way it can execute efficiently only the
aforementioned distance updates, by picking the arcs $(w,t)$ out of
these trees. The time complexity order per distance update and path extraction
is similar as in other algorithms. An implementation with a data structure of
heaps is possible, but a bucket-type data structure may be more appropriate.
The implied number of distance updates does not exceed
$nm_{0}$ ($m_{0}$ being the total number of
shortest path arcs), but is frequently much lower. In extreme cases the new
algorithm applies $O(n^{2})$ distance updates, whereas known
algorithms require $\Omega( n ^{3})$ updates.
The algorithm is especially suited for undirected graphs; here the construction
of one tree per node is sufficient and the computation times halve. 相似文献
16.
In this paper we give a fully dynamic approximation scheme for maintaining all-pairs shortest paths in planar networks. Given
an error parameter such that , our algorithm maintains approximate all-pairs shortest paths in an undirected planar graph G with nonnegative edge lengths. The approximate paths are guaranteed to be accurate to within a 1+ factor. The time bounds for both query and update for our algorithm is O(
-1
n
2/3
log
2
n log D) , where n is the number of nodes in G and D is the sum of its edge lengths. The time bound for the queries is worst case, while that for the additions is amortized.
Our approximation algorithm is based upon a novel technique for approximately representing all-pairs shortest paths among
a selected subset of the nodes by a sparse substitute graph.
Received January 1995; revised February 1997. 相似文献
17.
Cees Duin 《Algorithmica》2005,41(2):131-145
We formulate and study an algorithm for all-pairs
shortest paths in a network with $n $ nodes and $m $ arcs of
positive length. Using the dynamic programming principle of optimality of
subpaths the algorithm avoids redundant updates of distance labels. A shortest $v$--$w$ path, say $\langle v,
r_{1} , r_{2} , \ldots ,
r_{k } = w \rangle$ with $k $ arcs
($k \geq 1$), is only then combined with an arc
$(w,t) \in A$ to update the distance label of pair
$v$--$t$, if $(w,t) $ is present on the shortest
$r_{\ell } $--$ t$ path for each node
$r_{\ell}$ $(\ell=k- 1 , k- 2,
\ldots, 1) $.
The algorithm extracts shortest paths in order of length from a data structure
and builds two shortest path trees per node, an extra effort of
$O(n^{2})$. This way it can execute efficiently only the
aforementioned distance updates, by picking the arcs $(w,t)$ out of
these trees. The time complexity order per distance update and path extraction
is similar as in other algorithms. An implementation with a data structure of
heaps is possible, but a bucket-type data structure may be more appropriate.
The implied number of distance updates does not exceed
$nm_{0}$ ($m_{0}$ being the total number of
shortest path arcs), but is frequently much lower. In extreme cases the new
algorithm applies $O(n^{2})$ distance updates, whereas known
algorithms require $\Omega( n ^{3})$ updates.
The algorithm is especially suited for undirected graphs; here the construction
of one tree per node is sufficient and the computation times halve. 相似文献
18.
Dijkstra算法是计算最短路径的经典算法,在对该算法分析的基础上,对其进行了优化和改进。其一是对数据存储方式进行了改进,其二是对辅助向量采用堆排序改进。通过优化降低了内存消耗,搜索效率明显提高。 相似文献
19.
20.
三角网格模型上任意两点间的近似最短路径算法研究 总被引:15,自引:2,他引:13
提出一种任意三角网格模型上两点间的近似最短路径算法.该算法首先将三角网格模型表示为带权图结构,然后用Dijkstra算法计算带权图中两顶点间的最短路径,并将其作为网格模型上该两点间最短路径的初始近似.通过不断地迭代对相关三角形边进行自适应细分,并构造每次细分后新的带权图,从而对网格模型上的两点间最短路径进行迭代逼近.该算法效率高,可以很好地控制精度,适用于大型三角网格模型两点间最短路径寻找.文中还讨论了该算法在任意三角网格模型区域划分中的应用. 相似文献