首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies robust supervisory control of timed discrete event systems proposed by Brandin and Wonham. Given a set of possible models which includes the exact model of the plant, the objective is to synthesize a robust supervisor such that it achieves legal behavior for all possible models. We show that controllability for each possible model and observability for a suitably defined aggregate model are necessary and sufficient conditions for the existence of a solution to the robust supervisory control problem. Moreover, when there does not exist a solution, a maximally permissive robust supervisor is synthesized under the assumption that all controllable events are observable.  相似文献   

2.
This paper presents an algorithm for robust optimal control of regular languages under specified uncertainty bounds on the event cost parameters of the language measure that has been recently reported in literature. The performance index for the proposed robust optimal policy is obtained by combining the measure of the supervised plant language with uncertainty. The performance of a controller is represented by the language measure of the supervised plant and is minimized over the given range of event cost uncertainties. Synthesis of the robust optimal supervisory control policy requires at most n iterations, where n is the number of states of the deterministic finite-state automaton (DFSA) model, generated from the regular language of the unsupervised plant behavior. The computational complexity of the control synthesis method is polynomial in n.  相似文献   

3.
The problem of designing a feedback controller to achieve asymptotic disturbance rejection / attenuation while maintaining good transient response in the RTAC system is known as a benchmark nonlinear control problem, which has been an intensive research subject since 1995. In this paper, we will further investigate the solvability of the robust disturbance rejection problem of the RTAC system by the measurement output feedback control based on the robust output regulation method. We have obtained a design by overcoming two major obstacles: find a closed-form solution of the regulator equations; and devise a nonlinear internal model to account for non-polynomial nonlinearities.  相似文献   

4.
‘This paper introduces the integration of a probing scheme into a robust MPC-based robot motion planning and control algorithm. The proposed solution tackles the output-feedback tube-based MPC problem using the partially-closed loop strategy to incorporate future measurements in a computationally efficient manner. This combination will provide not only a robust controller but also avoids overly conservative planning which is a drawback of the original implementation of the output-feedback tube-based MPC. The proposed solution is composed of two controllers: (i) a nominal MPC controller with probing feature to plan a globally convergent trajectory in conjunction with active localization, and (ii) an ancillary MPC controller to stabilize the robot motion around the planned trajectory. The performance and real-time implementation of the proposed planning and control algorithms have been verified through both extensive numerical simulations and experiments with a mobile robot.  相似文献   

5.
A quite great progress of the supervisory control theory for discrete event systems (DES) has been made in the past nearly twenty years, and now, automata, formal language and Petri nets become the main research tools. This paper focus on the Petri nets based supervisory control theory of DES. Firstly, we review the research results in this field, and claim that there generally exists a problem in Petri nets based supervisory control theory of DES, that is, the deadlock caused by the controller introduced to enforce the given specification occurs in the closed-loop systems, especially the deadlock occurs in the closed-loop system in which the original plant is live. Finally, a possible research direction is presented for the solution of this problem.  相似文献   

6.
Nonlinear QFT (quantitative feedback theory) is a technique for solving the problem of robust control of an uncertain nonlinear plant by replacing the uncertain nonlinear plant with an ‘equivalent’ family of linear plants. The problem is then finding a linear QFT controller for this family of linear plants. While this approach is clearly limited, it follows in a long tradition of linearization approaches to nonlinear control (describing functions, extended linearization, etc.) which have been found to be quite effective in a wide range of applications. In recent work, the authors have developed an alternative function space method for the derivation and validation of nonlinear QFT that has clarified and simplified several important features of this approach. In particular, single validation conditions are identified for evaluating the linear equivalent family, and as a result, the nonlinear QFT problem is reduced to a linear equivalent problem decoupled from the linear QFT formalism. In this paper, we review this earlier work and use it in the development of (1) new results on the existence of nonlinear QFT solutions to robust control problems, and (2) new techniques for the circumvention of problems encountered in the application of this approach. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
This paper is concerned with the H2 estimation and control problems for uncertain discretetime systems with normbounded parameter uncertainty. We first present an analysis result on H2 norm bound for a stable uncertain system in terms of linear matrix inequalities ( LMIs). A solution to the robust H2 estimation problem is then derived in terms of two LMIs. As compared tothe existing results, our result on robust H2 estimation is more general. In addition, explicit search of appropriate scaling parameters is not needed as the optimization is convex in the scaling parameters. The LMI approach is also extended to solve the robust H2 control problem which has been difficult for the traditional Riccati equation approach since no separation principle has been known for uncertain systems. The design approach is demonstrated through a simple example.  相似文献   

8.
This paper proposes a method to design robust model predictive control (MPC) laws for discrete‐time linear systems with hard mixed constraints on states and inputs, in case of only an inexact solution of the associated quadratic program is available, because of real‐time requirements. By using a recently proposed dual gradient‐projection algorithm, it is proved that the discrepancy of the optimal control law as compared with the obtained one is bounded even if the solver is implemented in fixed‐point arithmetic. By defining an alternative MPC problem with tightened constraints, a feasible solution is obtained for the original MPC problem, which guarantees recursive feasibility and asymptotic stability of the closed‐loop system with respect to a set including the origin, also considering the presence of external disturbances. The proposed MPC law is implemented on a field‐programmable gate array in order to show the practical applicability of the method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This paper addresses the existence of loop gain-phase shaping (LGPS) solutions for the design of robust digital control systems for SISO, minimum-phase, continuous-time processes with parametric uncertainty. We develop the frequency response properties of LGPS for discrete-time systems using the Δ-transform, a transform method that applies to both continuous-time and discrete-time systems. A theorem is presented which demonstrates that for reasonable specifications there always exists a sampling period such that the robust digital control problem has a solution. Finally, we offer a procedure for estimating the maximum feasible sampling period for LGPS solutions to robust digital control problems.  相似文献   

10.
This paper is concerned with the H2 estimation and control problems for uncertain discretetime systems with norm-bounded parameter uncertainty. We first present an analysis result on H2 norm bound for a stable uncertain system in terms of linear matrix inequalities (LMIs). A solution to the robust H2 estimation problem is then derived in terms of two LMIs. As compared to the existing results, our result on robust H2 estimation is more general. In addition, explicit search of appropriate scaling parameters is not needed as the optimization is convex in the scaling parameters. The LMI approach is also extended to solve the robust H2 control problem which has been difficult for the traditional Riccati equation approach since no separation principle has been known for uncertain systems. The design approach is demonstrated through a simple example.  相似文献   

11.
This paper proposes a discrete-time robust control technique for an uncertain nonlinear system. The uncertainty mainly affects the system dynamics due to mismatched parameter variation which is bounded by a predefined known function. In order to compensate the effect of uncertainty, a robust control input is derived by formulating an equivalent optimal control problem for a virtual nominal system with a modified costfunctional. To derive the stabilizing control law for a mismatched system, this paper introduces another control input named as virtual input. This virtual input is not applied directly to stabilize the uncertain system, rather it is used to define a sufficient condition. To solve the nonlinear optimal control problem, a discretetime general Hamilton-Jacobi-Bellman (DT-GHJB) equation is considered and it is approximated numerically through a neural network (NN) implementation. The approximated solution of DTGHJB is used to compute the suboptimal control input for the virtual system. The suboptimal inputs for the virtual system ensure the asymptotic stability of the closed-loop uncertain system. A numerical example is illustrated with simulation results to prove the efficacy of the proposed control algorithm.   相似文献   

12.
Output synchronization of heterogeneous multi-agent systems has been one of the most interesting cooperative control problems. This paper first gives a brief survey of the research on the problem from which we see that the problem can be solved in a two-step manner with the aid of a properly designed local reference for each agent: (i) a controller is designed for each agent to achieve the trajectory regulation of the agent output to its associated reference; (ii) network collaboration is added to achieve consensus among references. In the presence of system uncertainties, the robust trajectory regulation problem in (i) can be solved by an internal model design. In this paper, we formulate a novel robust asymptotic model matching problem which is less conservative than trajectory regulation and can be solved by a static controller not relying on an internal model. Moreover, network collaboration is designed in (ii) within the so-called output communication setting such that consensus among references occurs concurrently with robust asymptotic model matching. As a result, output synchronization of heterogeneous multi-agent systems is achieved with a novel approach.  相似文献   

13.
It is well known that the design of supervisors for partially observed discrete-event systems is an NP-complete problem and hence computationally impractical. Furthermore, optimal supervisors for partially observed systems do not generally exist. Hence, the best supervisors that can be designed directly for operation under partial observation are the ones that generate the supremal normal (and controllable) sublanguage. In the present paper we show that a standard procedure exists by which any supervisor that has been designed for operation under full observation, can be modified to operate under partial observation. When the procedure is used to modify the optimal full-observation supervisor (i.e., the one that generates the supremal controllable language), the resultant modified supervisor is at least as efficient as the best one that can be designed directly (that generates the supremal normal sublanguage). The supervisor modification algorithm can be carried out on-line with linear computational complexity and hence makes the control under partial observation a computationally feasible procedure.  相似文献   

14.
The scenario approach to robust control design   总被引:1,自引:0,他引:1  
This paper proposes a new probabilistic solution framework for robust control analysis and synthesis problems that can be expressed in the form of minimization of a linear objective subject to convex constraints parameterized by uncertainty terms. This includes the wide class of NP-hard control problems representable by means of parameter-dependent linear matrix inequalities (LMIs). It is shown in this paper that by appropriate sampling of the constraints one obtains a standard convex optimization problem (the scenario problem) whose solution is approximately feasible for the original (usually infinite) set of constraints, i.e., the measure of the set of original constraints that are violated by the scenario solution rapidly decreases to zero as the number of samples is increased. We provide an explicit and efficient bound on the number of samples required to attain a-priori specified levels of probabilistic guarantee of robustness. A rich family of control problems which are in general hard to solve in a deterministically robust sense is therefore amenable to polynomial-time solution, if robustness is intended in the proposed risk-adjusted sense.  相似文献   

15.
The global robust stabilization problem of cascaded systems with dynamic uncertainty has been approached by the small gain theorem. This method, however, does not produce an explicit Lyapunov function for the closed-loop system. In this paper, we develop a Lyapunov's direct method based recursive approach to solving the global robust stabilization problem for the mentioned systems. This method also produces an explicit Lyapunov function for the closed-loop system which is a superposition of those of individual subsystems. This Lyapunov function is indispensable when the adaptive control of the same class of systems is further considered.  相似文献   

16.
A new procedure for robust and efficient design optimization of inviscid flow problems has been developed and implemented on a wide variety of test problems. The methodology involves the use of an accurate flow solver to calculate the objective function and an approximate, dissipative flow solver, which is used only in the solution of the discrete quasi-time-dependent adjoint problem. The resulting design sensitivities are very robust even in the presence of noise or other non-smoothness associated with objective functions in many high-speed flow problems. The design problem is solved using what we term progressive optimization, whereby a sequence of a partially converged flow solution, followed by a partially converged adjoint solution followed by an optimization step is performed. This procedure is performed using a sequence of progressively finer grids for the solution of the flow field, while only using coarser grids for the adjoint equation solution.This approach has been tested on numerous inverse and direct (constrained) design problems involving two- and three-dimensional transonic nozzles and airfoils as well as supersonic blunt bodies. The methodology is shown to be robust and highly efficient, with a converged design optimization produced in no more than the amount of computational work to perform from 0.5 to 2.5 fine-mesh flow analyses.  相似文献   

17.
This paper presents an optimal control approach for the general robust control design problem of linear time delay systems, which considers parameter uncertainties as well as state delay. It is shown that the robust control problem can be transformed into an optimal control problem with the amouof plant uncertainties involved in the performance index. A stability criterion has been developed under which the uncertain dynamical system can not only achieve stability, but also acquire the guaranteed level of performance for regulation. A suitable linear state feedback control law is also characterized via Lyapunov stability theory to ensure performance robustness of the closed‐loop system. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

18.
In this paper an H optimal, robust flight control system design for a supersonic aircraft has been described. Separate controllers are designed for longitudinal and lateral motions. A general two-degrees-of-freedom controller is proposed, where feedback control is designed for robust performance augmentation, while a series compensator is used to ensure that requisite handling qualities. Three alternative methods to achieve performance robustness have been discussed. The results obtained are very encouraging. It is hoped that this will equip the flight control engineers with an alternative to the conventional methods.  相似文献   

19.
This paper addresses the robust H control problem with scaled matrices. It is difficult to find a global optimal solution for this non-convex optimisation problem. A probabilistic solution, which can achieve globally optimal robust performance within any pre-specified tolerance, is obtained by using the proposed method based on randomised algorithm. In the proposed method, the scaled H control problem is divided into two parts: (1) assume the scaled matrices be random variables, the scaled H control problem is converted to a convex optimisation problem for the fixed sample of the scaled matrix and a optimal solution corresponding to the fixed sample is obtained; (2) a probabilistic optimal solution is obtained by using the randomised algorithm based on a finite number N optimal solutions, which are obtained in part (1). The analysis shows that the worst case complexity of proposed method is a polynomial.  相似文献   

20.
This paper deals with the problem of enforcing generalized mutual exclusion constraints (GMEC) on place/transition nets with uncontrollable transitions. An efficient control synthesis technique, which has been proposed in the literature, enforces GMEC constraints by introducing monitor places to create suitable place invariants. The method has been shown to be maximally permissive and to give a unique control structure in the case that the set of legal markings is controllable. This paper investigates on and formally shows that the class of controllers obtained by this technique may not have a supremal element for uncontrollable specifications. Moreover, it is shown that the family of monitor places enforcing an uncontrollable specification can be parameterized with respect to the solution of a linear system of equation. An algorithm to obtain such parameterization is presented here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号