首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
The sensitivity to water vapour of one‐, two‐, and three‐layer epitaxial graphene (1, 2, and 3LG) is examined in this study. It is unambiguously shown that graphene's response to water, as measured by changes in work function and carrier density, is dependent on its thickness, with 1LG being the most sensitive to water adsorption and environmental concentration changes. This is furthermore substantiated by surface adhesion measurements, which bring evidence that 1LG is less hydrophobic than 2LG. Yet, surprisingly, it is found that other contaminants commonly present in ambient air have a greater impact on graphene response than water vapor alone. This study indicates that graphene sensor design and calibration to minimize or discriminate the effect of the ambient, in which it is intended to operate, are necessary to insure the desired sensitivity and reliability of sensors. The present work will aid in developing models for realistic graphene sensors and establishing protocols for molecular sensor design and development.  相似文献   

3.
钟源  贺青 《计量学报》2011,32(3):285-288
石墨烯是一种具有奇异特性的新型材料,它由单层碳原子构成六方蜂巢状二维结构。因其具有独特的电子能带结构而显示相对论电子学特性,石墨烯是迄今为止人类发现的最理想的二维电子系统,具有丰富而新奇的物理特性。综述了石墨烯的结构、特性、制备方法及其可能的工业应用,结合现代计量科学进展,对石墨烯在量子计量基准中的应用前景进行了展望。  相似文献   

4.
Quantum Hall conductance in monolayer graphene on an epitaxial SrTiO3 (STO) thin film is studied to understand the role of oxygen vacancies in determining the dielectric properties of STO. As the gate‐voltage sweep range is gradually increased in the device, systematic generation and annihilation of oxygen vacancies, evidenced from the hysteretic conductance behavior in the graphene, are observed. Furthermore, based on the experimentally observed linear scaling relation between the effective capacitance and the voltage sweep range, a simple model is constructed to manifest the relationship among the dielectric properties of STO with oxygen vacancies. The inherent quantum Hall conductance in graphene can be considered as a sensitive, robust, and noninvasive probe for understanding the electronic and ionic phenomena in complex transition‐metal oxides without impairing the oxide layer underneath.  相似文献   

5.
Rectangle‐ and triangle‐shaped microscale graphene films are grown on epitaxial Co films deposited on single‐crystal MgO substrates with (001) and (111) planes, respectively. A thin film of Co or Ni metal is epitaxially deposited on a MgO substrate by sputtering while heating the substrate. Thermal decomposition of polystyrene over this epitaxial metal film in vacuum gives rectangular or triangular pit structures whose orientation and shape are strongly dependent on the crystallographic orientation of the MgO substrate. Raman mapping measurements indicate preferential formation of few‐layer graphene films inside these pits. The rectangular graphene films are transferred onto a SiO2/Si substrate while maintaining the original shape and field‐effect transistors are fabricated using the transferred films. These findings on the formation of rectangular/triangular graphene give new insights on the formation mechanism of graphene and can be applied for more advanced/controlled graphene growth.  相似文献   

6.
石墨烯外延生长及其器件应用研究进展   总被引:3,自引:0,他引:3  
石墨烯具有优异的物理和电学性能, 已成为物理和半导体电子研究领域的国际前沿和热点之一. 本文简单介绍了石墨烯的物理及电学特性, 详细评述了在众多制备方法中最有希望实现石墨烯大面积、高质量的外延生长技术, 系统论述了不同SiC和金属衬底外延生长石墨烯的研究进展, 并简要概述了石墨烯在场效应晶体管、发光二极管、超级电容器及锂离子电池等光电器件方面的最新研究进展. 外延生长法已经初步实现了从纳米、微米、厘米量级石墨烯的成功制备, 同时可实现其厚度从单层、双层到少数层的调控, 有望成为高质量、与传统电子工艺兼容、低成本、大面积的石墨烯宏量制备技术, 为其器件应用奠定基础.  相似文献   

7.
8.
Many methods have been reported for synthesizing graphene oxide (GO) and graphene oxide quantum dots (GOQDs) where a tedious operational procedure and long reaction time are generally required. Herein, a facile one‐pot solvothermal method that allows selective synthesis of pure GO and pure GOQDs, respectively is demonstrated. What is more, the final product of either GO or differently sized GOQDs can be easily controlled by adjusting the reaction temperatures or reactant ratios, which is also feasible when enlarged to gram scale. The 2.5 nm GOQDs show excellent photoluminescence that can be utilized for bioimaging or distinctive detection of Eu3+ and Tb3+ from their respective mixtures with other rare earth and/or transition metal ions, at sub‐ppm level.  相似文献   

9.
刘润 《计量与测试技术》2020,47(3):56-58,63
本文提出了在电学计量中技术指标核算和数据处理的难点,分析了Excel VBA在数据自动化处理方面的优势。提出了通过将复杂参数存入数组实现快速运算的方法,并通过数字多用表校准举例验证该方法的可行性。文中还对VBA在计量检定结果处理中的应用做了详细阐述,最后对结果进行了分析。  相似文献   

10.
11.
本文从计量学的基本特性出发,讨论了计量单位由实物基准向量子基准发展的必然性,提出了 SI 的几个单位建立量子基准的初步构想,最后还指出了基本物理常数及共组合与计量单位的对应关系以及精测这些常数的重要性。  相似文献   

12.
13.
14.
The effects of Pb intercalation on the structural and electronic properties of epitaxial single‐layer graphene grown on SiC(0001) substrate are investigated using scanning tunneling microscopy (STM), noncontact atomic force microscopy, Kelvin probe force microscopy (KPFM), X‐ray photoelectron spectroscopy, and angle‐resolved photoemission spectroscopy (ARPES) methods. The STM results show the formation of an ordered moiré superstructure pattern induced by Pb atom intercalation underneath the graphene layer. ARPES measurements reveal the presence of two additional linearly dispersing π‐bands, providing evidence for the decoupling of the buffer layer from the underlying SiC substrate. Upon Pb intercalation, the Si 2p core level spectra show a signature for the existence of Pb? Si chemical bonds at the interface region, as manifested in a shift of 1.2 eV of the bulk SiC component toward lower binding energies. The Pb intercalation gives rise to hole‐doping of graphene and results in a shift of the Dirac point energy by about 0.1 eV above the Fermi level, as revealed by the ARPES measurements. The KPFM experiments have shown that decoupling of the graphene layer by Pb intercalation is accompanied by a work function increase. The observed increase in the work function is attributed to the suppression of the electron transfer from the SiC substrate to the graphene layer. The Pb intercalated structure is found to be stable in ambient conditions and at high temperatures up to 1250 °C. These results demonstrate that the construction of a graphene‐capped Pb/SiC system offers a possibility of tuning the graphene electronic properties and exploring intriguing physical properties such as superconductivity and spintronics.  相似文献   

15.
16.
Si(111)衬底上多层石墨烯薄膜的外延生长   总被引:1,自引:0,他引:1  
利用固源分子束外延(SSMBE)技术, 在Si(111)衬底上沉积碳原子外延生长石墨烯薄膜, 通过反射式高能电子衍射(RHEED)、红外吸收谱(FTIR)、拉曼光谱(RAMAN)和X射线吸收精细结构谱(NEXAFS)等手段对不同衬底温度(400、600、700、800℃)生长的薄膜进行结构表征. RAMAN和NEXAFS结果表明: 在800℃下制备的薄膜具有石墨烯的特征, 而 400、600和700℃生长的样品为非晶或多晶碳薄膜. RHEED和FTIR结果表明, 沉积温度在600℃以下时C原子和衬底Si原子没有成键, 而衬底温度提升到700℃以上, 沉积的C原子会先和衬底Si原子反应形成SiC缓冲层, 且在800℃沉积时缓冲层质量较好. 因此在Si衬底上制备石墨烯薄膜需要较高的衬底温度和高质量的SiC缓冲层.  相似文献   

17.
A systematic strategy for designing structured nanomaterials is demonstrated through self‐assembly of graphene quantum dots. The approach reveals that graphene derivatives at the nanoscale assemble into various architectures of nanocrystals in a binary solution system. The shapes of the nanocrystals continue to evolve in terms of the intimate association of organic molecules with the dispersion medium, obtaining a high index faceted superlattice. This facile synthetic process provides a versatile strategy for designing particles to new structured materials systems, exploiting the crystallization of layered graphitic carbon structures within single crystals.  相似文献   

18.
Technical Physics Letters - It is shown that the Fermi velocity of electrons is a natural characteristic of gapless graphene and cumulene modification of carbyne weakly coupled with the substrate....  相似文献   

19.
石墨烯量子点(GQDs)作为石墨烯材料的衍生物, 在兼顾了石墨烯优良特性的同时, 又依靠量子限域效应和边界效应而具备了光致发光(PL)等石墨烯所不具备的性质, 而且在细胞毒性、生物相容性等方面也有更好的表现。近年来, GQDs的制备方法日趋多样化, 通常将其分为Top-down和Bottom-up两种方法。随着GQDs在生物医学领域应用的不断深化, 对其形貌和尺寸控制也提出了更高的要求, 因此本文对Bottom-up法等一些有希望精确控制GQDs形貌和尺寸的方法进行了重点介绍, 并对各种方法的优缺点进行了对比。目前GQDs的生物应用主要包括生物成像、生物传感器、药物输运和抗菌剂等, 本文对其各种应用分别进行了介绍, 并结合各种应用对GQDs的要求给出了制备方法的建议。文章最后还指出了GQDs研究中存在的问题及发展方向。  相似文献   

20.
The surface property of growth substrate imposes significant influence in the growth behaviors of 2D materials. Rhenium disulfide (ReS2) is a new family of 2D transition metal dichalcogenides with unique distorted 1T crystal structure and thickness‐independent direct bandgap. The role of growth substrate is more critical for ReS2 owing to its weak interlayer coupling property, which leads to preferred growth along the out‐of‐plane direction while suppressing the uniform in‐plane growth. Herein, graphene is introduced as the growth substrate for ReS2 and the synthesis of graphene/ReS2 vertical heterostructure is demonstrated via chemical vapor deposition. Compared with the rough surface of SiO2/Si substrate with dangling bonds which hinders the uniform growth of ReS2, the inert and smooth surface nature of graphene sheet provides a lower energy barrier for migration of the adatoms, thereby promoting the growth of ReS2 on the graphene surface along the in‐plane direction. Furthermore, patterning of the graphene/ReS2 heterostructure is achieved by the selective growth of ReS2, which is attributed to the strong binding energy between sulfur atoms and graphene surface. The fundamental studies in the role of graphene as the growth template in the formation of van der Waals heterostructures provide better insights into the synthesis of 2D heterostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号