首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文综述了锂离子电池负极材料的最新研究进展,包括非金属类材料,金属氧化物材料以及合金材料。并对锂离子电池负极材料的发展趋势进行展望。  相似文献   

2.
目前关于废锂离子电池资源化的研究主要集中在正极贵金属和负极铜材料的分离回收和精制方面,但对负极活性材料的资源化研究很少。本文采用XRD、SEM、GC-MS、ICP-AES等检测手段对废锂离子电池负极活性材料中石墨的结构、有机物的种类以及Li、Gu等金属的含量进行测试分析。结果显示,其主要组分石墨的本体结构基本无变化,仍保持完整的层状结构,但是其中含有一定量的有机物质,如有机电解质及增塑剂等。经过提纯,可以将其作为石墨原料进行资源化再利用;此外,稀有金属Li含量较高,为31.03 mg/g,分离回收的价值较高。  相似文献   

3.
《化工设计通讯》2019,(11):199-200
锂离子电池具有高电压、高能量密度、大容量、长寿命等优点,可以循环性的使用。锂离子电池的使用对生态环境所造成的影响比较微弱,是当前我国电动汽车二次电池使用频率最高的一类。在锂离子电池中,正极材料是其重要的组成部分,正极材料的性能会直接影响锂离子电池自身的使用性能,同时还会影响到电池制备的成本费用,想要实现我国电动汽车产业化的目标,就需要注重锂离子电池正极材料研究工作的开展。不断地提升电化学性能,消除安全隐患。  相似文献   

4.
锂离子电池以其优异的性能而成为近年来研究热点之一,而正极材料是锂离子电池性能提高的关键所在,本文综述了近年来发展起来的典型锂离子电池正极材料的制备、特点及性能,并对锂离子电池正极材料的发展趋势进行了展望。  相似文献   

5.
能源是影响社会发展的主要因素,同时也是经济社会发展的基础。能源工业既是国民经济的基础产业,又是技术密集型产业。因此,能源科技创新在整个国家科技创新体系中占有十分重要的地位。锂离子电池因具有能量密度高、循环寿命长且无记忆效应等优点而被认为是最理想的储能元件。这也使锂离子电池电极材料的研究成为当近材料研究的热点。锂离子电池的关键材料之一是负极材料,正是因为负极材料的许多问题,限制了锂离子电池的进一步应用。因此,负极材料性能的提高十分必要。  相似文献   

6.
锂离子电池因其能量密度大、比容量高、使用寿命长等优点,已成为广泛应用的储电设备。随着新能源汽车市场的强劲发展,要求作为动力电池的锂离子电池性能进一步提升,而正极材料是锂离子电池最为重要的组成部分,开发研究性能更好、比容量更高的正极材料是进一步提高锂离子电池能量密度的关键,目前,研究的锂离子电池正极材料主要有锂钴氧化物、锂镍氧化物、锂锰氧化物及锂铁化合物等。本文对主要的锂离子正极材料研究应用现状进行了探讨分析,对其发展趋势进行了预测,可为锂离子电池的深入研究提供一定的参考借鉴。  相似文献   

7.
锂离子电池的应用领域日益广泛,而正极材料是锂离子电池的重要组成部分,本文介绍了锂离子电池的工作原理,综述了锂离子电池正极材料方面的研究成果.  相似文献   

8.
锂离子电池正极材料研究进展   总被引:2,自引:0,他引:2  
刘建  刘景 《佛山陶瓷》2003,(11):39-42
本文比较系统地叙述了用于锂离子电池正极材料的发展研究状况,其中包括的正极材料有:金属氧化物LiCoO2、LiNiO2、LiMn2O4、钒系正极材料以及有机多硫化物正极材料,并对正极材料研究的一些热点作了比较详细的评述。  相似文献   

9.
关云山  张爱华  李晓昆 《化学世界》2007,48(11):689-693
论述了近年来合金类负极材料的研究进展,尤其对Sn基、Si基、Sb基等二元合金及金属间化合物、纳米合金、活性/非活性合金以及多相复合物电极材料的研究现状作了介绍;指出了合金电极材料存在的问题和解决方法,并对合金类负极材料的研究发展趋势作了展望。  相似文献   

10.
锂离子电池正极材料的研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
李恒  张丽鹏  于先进 《硅酸盐通报》2012,31(6):1486-1490
锂离子电池具有工作电压高、能量密度大、工作温度范围宽、安全性能好等众多优点,因而成为近年来倍受关注的电动汽车动力电源之一.随着正极材料种类的更新,制备过程中多种改性方法的采用,如掺杂与包覆导电剂来提高正极导电率,减小粒径尺寸加快锂离子传导速率等方法,使锂离子电池电化学性能得到提高.本文综述了几种常见锂离子电池正极材料的研究现状与进展,重点对LiCoO2、LiNiO2、LiMn2O4、LiFePO4几种正极材料的晶体结构、性能、合成方法、以及掺杂与包裹改性进行了介绍,并对其发展趋势进行了展望.  相似文献   

11.
锂离子电池正极材料进展   总被引:1,自引:0,他引:1  
明博  韩虹羽 《化工生产与技术》2012,19(4):24-33,66,67
介绍了锂离子电池的发展阶段、工作原理及特点,叙述了锂电池已商业化正极材料钴酸锂、锰酸锂、磷酸铁锂的特性、合成方法及其优缺点,纳米技术锂离子电池正极材料应用及其合成方法。认为应根据现有正极材料出现的问题,通过掺杂、包覆、加入辅助剂和表面修饰改性等方法减低成本,利用纳米材料的优点和微米材料优良的稳定性和容易制备的优点合成纳微分层结构的材料解决纳米材料的低热力学稳定性、团聚及与电解液发生副反应等问题;可以尝试着探索新的方法合成纳米级颗粒.并将最优的方法应用于新材料和经典电极材料的制备,从而充分发挥纳米级材料的尺寸效应和表面效应.改善电极材料的电化学活性.有助于推进纳米正极材料的工业化进程。  相似文献   

12.
综述了锂离子电池正极材料LiMn2O4的制备、结构及其电化学性能.LiMn2O4具有尖晶石型结构,为锂离子的脱嵌与嵌入提供了三维隧道空间,它具有3 V和4 V两个电压平台,成为锂离子电池最有吸引力的材料.  相似文献   

13.
雷钢铁  李朝晖  苏光耀 《化学世界》2003,44(10):514-516
以甘氨酸为配合剂,用溶胶-凝胶法制备了掺钴的锂离子电池阴极材料LiCoxMn2-xO4,用XRD、SEM等方法研究了掺钴量、烧结温度等因素对LiCoxMn2-xO4的结构、表面形貌及电化学性能的影响,实验结果表明,烧结温度为750℃,x=0.12时,LiCoxMn2-xO4的电化学性能最佳。  相似文献   

14.
以氯化锡、氨水和无水乙醇为原料,采用溶胶一凝胶法制备纳米SnO2粉末,并与石墨、葡萄糖共热制备Sn/SnO2/石墨复合材料。用X射线衍射分析、透射电镜和电化学测试对材料进行了表征。采用该方法制备出的Sn/SnO2/石墨复合材料可逆容量可达680mA·h·g^-1,经过20次循环后容量基本稳定在380mA·h·g^-1。  相似文献   

15.
锂离子电池中的含氟电极和电解质材料   总被引:1,自引:0,他引:1  
绿色能源技术和低碳经济的发展对高性能锂离子电池提出了越来越高的要求。锂离子电池的发展主要依赖于电池材料的突破,而含氟材料因其结构稳定性好、安全性高而广泛应用。系统介绍了锂离子电池中涉及的含氟电极和电解质材料,着重对其应用特点和研究现状等进行了总结,并对锂电池相关含氟材料的发展方向进行了展望。  相似文献   

16.
张永刚  王成扬  闫裴 《化工进展》2004,23(3):248-251
掺杂法是进行锂离子二次电池用炭负极材料改性与修饰的方法之一,通过对国内外以硼作为掺杂原子进行炭负极材料改性的方法的总结,举例分析了浸渍法、包埋法和共混法掺硼的特点,并指出了目前掺硼工艺中存在的硼在炭材料中的分散不均匀和硼含量较低的两大问题。此外,总结介绍了前人关于硼与炭材料相互作用的机理,从理论上分析探讨了掺杂硼炭材料的特点以及掺杂硼炭材料用作锂二次电池负极的电化学性能。并且指出添加硼元素后,炭负极材料的各种容量都有所提高,而今后的任务之一就是降低不可逆容量。  相似文献   

17.
介绍了锂电子电池的主要材料组成,以及锂电子电池电解液的主要成分,总结了重要电解质材料六氟磷酸锂的制备工艺及其改进技术。  相似文献   

18.
石墨类碳负极材料作为电化学嵌锂宿主材料的研究一直是锂离子电池负极材料研究的重点。本文简述了石墨作为锂离子电池负极材料的结构,分析了石墨作为负极材料的优缺点,综述了石墨负极材料的改性方法及其研究进展,指出了石墨改性的发展方向。通过改性处理可以提高可逆比容量和首次库仑效率,改善其倍率性能和循环稳定性,有效改善石墨电极的综合电化学性能。  相似文献   

19.
在生命周期评价的基础上,本文通过对锂电正极材料五个阶段对环境的影响进行评估,提出了锂电正极材料LCA计算方法,并用该方法分析比较了磷酸铁锂和锰酸锂两种正极材料对环境的影响。结果表明:锰酸锂相对于磷酸铁锂具有更大的环境效益。该结果为市场以及锂电正极材料生产厂商选择动力电池用正极材料提供一定的参考。  相似文献   

20.
采用湿式破碎分选、钴酸锂与碳粉混合物预焙烧、钴酸锂预焙烧产物与硫酸钠和浓硫酸混合体系焙烧、热水浸出焙烧产物中的钴,研究了钴酸锂的焙烧及浸出过程。实验结果显示:锂离子电池经湿式破碎分选后铜箔的回收率大于97%,钴酸锂粉末回收率大于98%;钴酸锂与碳粉混合物经700℃预焙烧2 h后再与硫酸钠和浓硫酸在200℃下焙烧4 h,焙烧产物用70℃热水浸出30 min,钴的浸出率可达97%;XRD分析焙烧产物发现生成了Na2Co(SO4)2和Na6Co(SO4)4。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号