首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-performance cascaded sigma-delta modulator is presented. It has a new three-stage fourth-order topology and provides functionally a maximum signal to quantization noise ratio of 16 bits and 16.5-bit dynamic range with an oversampling ratio of only 32. This modulator is implemented with fully differential switch-capacitor circuits and is manufactured in a 2-/spl mu/m BiCMOS process. The converter, operated from +/-2.5 V power supply, +/-1.25 V reference voltage and oversampling clock of 48 MHz, achieves 97 dB resolution at a Nyquist conversion rate of 1.5 MHz after comb-filtering decimation. The power consumption of the converter is 180 mW.<>  相似文献   

2.
Bandpass modulators sampling at high IFs (/spl sim/200 MHz) allow direct sampling of an IF signal, reducing analog hardware, and make it easier to realize completely software-programmable receivers. This paper presents the circuit design of and test results from a continuous-time tunable IF-sampling fourth-order bandpass /spl Delta//spl Sigma/ modulator implemented in InP HBT IC technology for use in a multimode digital receiver application. The bandpass /spl Delta//spl Sigma/ modulator is fabricated in AlInAs-GaInAs heterojunction bipolar technology with a peak unity current gain cutoff frequency (f/sub T/) of 130 GHz and a maximum frequency of oscillation (f/sub MAX/) of 130 GHz. The fourth-order bandpass /spl Delta//spl Sigma/ modulator consists of two bandpass resonators that can be tuned to optimize both wide-band and narrow-band operation. The IF is tunable from 140 to 210 MHz in this /spl Delta//spl Sigma/ modulator for use in multiple platform applications. Operating from /spl plusmn/5-V power supplies, the fabricated fourth-order /spl Delta//spl Sigma/ modulator sampling at 4 GSPS demonstrates stable behavior and achieves a signal-to-(noise + distortion) ratio (SNDR) of 78 dB at 1 MHz BW and 50 dB at 60 MHz BW. The average SNDR performance measured on over 250 parts is 72.5 dB at 1 MHz BW and 47.7 dB at 60 MHz BW.  相似文献   

3.
A 1-V 10.7-MHz fourth-order bandpass delta-sigma modulator using two switched opamps (SOPs) is presented. The 3/4 sampling frequency and the double-sampling techniques are adapted for this modulator to relax the required clocking rate. The presented modulator can not only reduce the number of SOPs, but also the number of capacitors. It has been implemented in 0.25-/spl mu/m 1P5M CMOS process with MIM capacitors. The modulator can receive 10.7-MHz IF signals by using a clock frequency of 7.13 MHz. A dynamic range of 62 dB within bandwidth of 200 kHz is achieved and the power consumption of 8.45 mW is measured at 1-V supply voltage. The image tone can be suppressed by 44 dB with respect to the carrier. The in-band third-order intermodulation (IM3) distortion is -65 dBc below the desired signal.  相似文献   

4.
A 1 V switched-capacitor (SC) bandpass sigma-delta (/spl Sigma//spl Delta/) modulator is realized using a high-speed switched-opamp (SO) technique with a sampling frequency of up to 50 MHz, which is improved ten times more than prior 1 V SO designs and comparable to the performance of the state-of-the-art SC circuits that operate at much higher supply voltages. On the system level, a fast-settling double-sampling SC biquadratic filter architecture is proposed to achieve high-speed operation. A low-voltage double-sampling finite-gain-compensation technique is employed to realize a high-resolution /spl Sigma//spl Delta/ modulator using only low-DC-gain opamps to maximize the speed and to reduce power dissipation. On the circuit level, a fast-switching methodology is proposed for the design of the switchable opamps to achieve a switching frequency up to 50 MHz. Implemented in a 0.35-/spl mu/m CMOS process (V/sub TP/=0.82 V and V/sub TN/=0.65 V) and at 1 V supply, the modulator achieves a measured peak signal-to-noise-and-distortion ratio (SNDR) of 42.3 dB at 10.7 MHz with a signal bandwidth of 200 kHz, while dissipating 12 mW and occupying a chip area of 1.3 mm/sup 2/.  相似文献   

5.
Double-sampling techniques allow to double the sampling frequency of a switched capacitor /spl Sigma//spl Delta/ analog-to-digital convertors without increasing the clock frequency. Unfortunately, path mismatch between the double sampling branches may cause noise folding, which could ruin the modulator's performance. The fully floating double-sampling integrator is an interesting building block to be used in such a double sampling /spl Sigma//spl Delta/ modulator because its operation is tolerant to path mismatch. However, this circuit exhibits an undesired bilinear filter effect. This effectively increases the order of the modulator by one. Due to this, previously presented structures don't have enough freedom to fully control the modulator pole positions. In this paper, we introduce modified topologies for double-sampling /spl Sigma//spl Delta/ modulators built with bilinear integrators. We show that these architectures provide full control of the modulator pole positions and hence can be used to implement any noise transfer function. Additionally, analytical expressions are obtained for the residual folded noise.  相似文献   

6.
A double-sampling pseudo-two-path bandpass ΔΣ modulator is proposed. This modulator has an output rate equal to twice the clock rate, uses n/2 operational amplifiers (op-amps) for an nth-older noise transfer function, and has reduced clock feedthrough in the signal path band. The required clocks can be simpler to implement than the conventional pseudo-two-path techniques. The measured signal-to-noise ratio and dynamic range of the fourth-order double-sampling pseudo-two-path bandpass ΔΣ modulator in a 30-kHz bandwidth at a center frequency of 2.5 MHz (at a clock frequency of 5 MHz) are 62 and 68 dB, respectively  相似文献   

7.
This paper presents the first implementation results for a time-interleaved continuous-time /spl Delta//spl Sigma/ modulator. The derivation of the time-interleaved continuous-time /spl Delta//spl Sigma/ modulator from a discrete-time /spl Delta//spl Sigma/ modulator is presented. With various simplifications, the resulting modulator has only a single path of integrators, making it robust to DC offsets. A time-interleaved by 2 continuous-time third-order low-pass /spl Delta//spl Sigma/ modulator is designed in a 0.18-/spl mu/m CMOS technology with an oversampling ratio of 5 at sampling frequencies of 100 and 200 MHz. Experimental results show that a signal-to-noise-plus-distortion ratio (SNDR) of 57 dB and a dynamic range of 60 dB are obtained with an input bandwidth of 10 MHz, and an SNDR of 49 dB with a dynamic range of 55 dB is attained with an input bandwidth of 20 MHz. The power consumption is 101 and 103 mW, respectively.  相似文献   

8.
Three fully differential bandpass (BP) /spl Delta//spl Sigma/ modulators are presented. Two double-delay resonators are implemented using only one operational amplifier. The prototype circuits operate at a sampling frequency of 80 MHz. The BP /spl Delta//spl Sigma/ modulators can be used in an intermediate-frequency (IF) receiver to combine frequency downconversion with analog-to-digital conversion by directly sampling an input signal from an IF of 60 MHz to a digital IF of 20 MHz. The measured peak signal-to-noise-plus-distortion ratios are 78 dB for 270 kHz (GSM), 75 dB for 1.25 MHz (IS-95), 69 dB for 1.762 MHz (DECT), and 48 dB for 3.84 MHz (WCDMA/CDMA2000) bandwidths. The circuits are implemented with a 0.35-/spl mu/m CMOS technology and consume 24-38 mW from a 3.0-V supply, depending on the architecture.  相似文献   

9.
A 64-MHz clock rate sigma-delta (/spl Sigma//spl Delta/) analog-to-digital converter (ADC) with -105-dB intermodulation distortion (IMD) at a 1.5-MHz signal frequency is reported. A linear replica bridge sampling network enables the ADC to achieve high linearity for high signal frequencies. Operating at an oversampling ratio of 29, a 2-1-1 cascade with a 2-b quantizer in the last stage reduces the quantization noise level well below that of the thermal noise. The measured signal-to-noise and distortion ratio (SNDR) in 1.1-MHz bandwidth is 88 dB, and the spurious-free-dynamic-range (SFDR) is 106 dB. The modulator and reference buffers occupy a 2.6-mm/sup 2/ die area and have been implemented with thick oxide devices, with minimum channel length of 0.35 /spl mu/m, in a dual-gate 0.18-/spl mu/m 1.8-V single-poly five-metal (SP5M) digital CMOS process. The power consumed by the ADC is 230 mW, including the decimation filters.  相似文献   

10.
This paper describes a 0.35-/spl mu/m CMOS fourth-order bandpass analog-digital sigma-delta (/spl Sigma//spl Delta/) modulator for wide-band base stations receivers. The modulator, based on a time-interleaved four-path architecture, achieves an equivalent sampling frequency of 280 MHz, although the building blocks operate at only 70 MHz. In measurements, the prototype chip achieves a dynamic range of 72 dB (12 bits of resolution) with a signal bandwidth of 4.375 MHz centered around an intermediate frequency of 70 MHz. The measured spurious-free dynamic range is 69 dB. The /spl Sigma//spl Delta/ modulator dissipates 480 mW from a 3.3-V supply, including voltage reference buffers and output pads with high-driving capabilities, and occupies 20 mm/sup 2/ of silicon area.  相似文献   

11.
This paper presents a quadrature bandpass /spl Sigma//spl Delta/ modulator with continuous-time architecture. Due to the continuous-time architecture and the inherent anti-aliasing filter, the proposed /spl Sigma//spl Delta/ modulator needs no additional anti-aliasing filter in front of the modulator in contrast to quadrature bandpass /spl Sigma//spl Delta/ modulators with switched-capacitor architectures. The second-order /spl Sigma//spl Delta/ modulator digitizes complex analog I/Q input signals at 1-MHz intermediate frequency and operates within a clock frequency range of 25-100 MHz. The modulator chip achieves a peak signal-to-noise-distortion ratio (SNDR) of 56.7 dB and a dynamic range of 63.8 dB within a 1-MHz signal bandwidth and at a clock frequency of 100 MHz. Furthermore, it provides an image rejection of at least 40 dB. The 0.65-/spl mu/m BiCMOS chip consumes 21.8 mW at 2.7-V supply voltage.  相似文献   

12.
Low-voltage high-speed switched-capacitor (SC) circuit design without using voltage bootstrapper is presented. The basic building block used for low-voltage SC circuit design is the auto-zeroed integrator (AZI), which can work at both low voltage and high sampling frequency. With this method, two low-voltage SC systems were successfully designed and implemented in 1.2-/spl mu/m CMOS technology. The first one is a fully differential SC bandpass biquad working at 1.5 V and 5.0-MHz clock frequency. The measured Q value is 8.0 at the center frequency of 833 kHz. The second one is a fully differential fourth-order bandpass /spl Delta//spl Sigma/ modulator that also works at 1.5 V and 5.0 MHz. Its measured third-order intermodulation is less than -78 dBc due to the low distortion characteristic of AZI. The measured signal-to-noise ratio of the modulator is 61 dB within the narrow band of 25 kHz centered at 1.25 MHz.  相似文献   

13.
A double-sampling split ????-ADC with bilinear integrators and a 7-level quantizer is presented. It achieves third order noise shaping with a second order modulator through quantization noise-coupling. The modulator is integrated in a 130?nm CMOS technology. For a clock frequency of 48?MHz and an oversampling ratio of 20 (2.4?MHz signal bandwidth), it achieves 72?dB DR and 68?dB SNR. The prototype consumes 8?mW from a 1.2?V voltage supply.  相似文献   

14.
A feedforward compensation scheme with no Miller capacitors is proposed to overcome the bandwidth limitations of traditional Miller compensation schemes. The technique has been used in the design of an operational transconductance amplifier (OTA) with a dc gain of 80 dB, gain bandwidth of 1.4 GHz, phase margin of 62/spl deg/, and 2 ns settling time for 2-pF load capacitor in a standard 0.35-/spl mu/m CMOS technology. The OTA's current consumption is 4.6 mA. The OTA is used in the design of a fourth-order switched-capacitor bandpass /spl Sigma//spl Delta/ modulator with a clock frequency of 92 MHz. It achieves a peak signal-to-noise ratio of 80 and 54 dB for 270-kHz (GSM) and 3.84-MHz (CDMA) bandwidths, respectively and consumes 19 mA of current from a /spl plusmn/1.25-V supply.  相似文献   

15.
A wide-bandwidth continuous-time sigma-delta ADC is implemented in a 0.13-/spl mu/m CMOS. The circuit is targeted for wide-bandwidth applications such as video or wireless base-stations. The active blocks are composed of regular threshold voltage devices only. The fourth-order architecture uses an OpAmp-RC-based loop filter and a 4-bit internal quantizer operated at 300-MHz clock frequency. The converter achieves a dynamic range of 11 bits over a bandwidth of 15 MHz. The power dissipation is 70 mW from a 1.5-V supply.  相似文献   

16.
This paper presents a superconducting bandpass /spl Delta//spl Sigma/ modulator for direct analog-to-digital conversion of radio frequency signals in the gigahertz range. The design, based on a 2.23-GHz microstrip resonator and a single flux quantum comparator, exploits several advantages of superconducting electronics: the high quality factor of resonators, the fast switching speed of the Josephson junction, natural quantization of voltage pulses, and high circuit sensitivity. The modulator test chip includes an integrated acquisition memory for capturing output data at sampling rates up to 45 GHz. The small size (256 b) of the acquisition memory limits the frequency resolution of spectra based on standard fast Fourier transforms. Output spectra with enhanced resolution are obtained with a segmented correlation method. At a 42.6-GHz sampling rate, the measured SNR is 49 dB over a 20.8-MHz bandwidth, and a full-scale (FS) input is -17.4 dBm. At a 40.2-GHz sampling rate, the measured in-band noise is -57 dBFS over a 19.6-MHz bandwidth. The modulator test chip contains 4065 Josephson junctions and dissipates 1.9 mW at T=4.2 K.  相似文献   

17.
A bandpass Σ-Δ modulator is described in this paper that uses frequency translation inside the Σ-Δ modulator loop to take advantage of the attributes of both continuous-time and discrete-time circuits. A CMOS direct-conversion modulator digitizes a 200 kHz intermediate-frequency signal centered at 100 MHz and produces baseband I/Q outputs with a peak signal-to-noise ratio of 54 dB. Images due to I/Q mismatches are suppressed by 50 dB. This 0.35-μm digital CMOS chip operates from a 2.7/3.3-V supply, dissipates 330 mW, and occupies 3.2 mm2  相似文献   

18.
A fourth-order switched-capacitor bandpassΣ△modulator is presented for digital intermediatefrequency (IF) receivers.The circuit operates at a sampling frequency of 100 MHz.The transfer function of the resonator considering nonidealities of the operational amplifier is proposed so as to optimize the performance of resonators.The modulator is implemented in a 0.13-μm standard CMOS process.The measurement shows that the signal-to-noise-and-distortion ratio and dynamic range achieve 68 dB and 75 dB,respectively,over a bandwidth of 200 kHz centered at 25 MHz,and the power dissipation is 8.2 mW at a 1.2 V supply.  相似文献   

19.
The frequency synthesizer with two LC-VCOs is fully integrated in a 0.35-/spl mu/m CMOS technology. In supporting dual bands, all building blocks except VCOs are shared. A current compensation scheme using a replica charge pump improves the linearity of the frequency synthesizer and, thus, suppresses spurious tones. To reduce the quantization noise from a /spl Delta//spl Sigma/ modulator and the noise from the building blocks except the VCO, the proposed architecture uses a frequency doubler with a noise-insensitive duty-cycle correction circuit (DCC) in the reference clock path. Power consumption is 37.8 mW with a 2.7-V supply. The proposed frequency synthesizer supports 10-kHz channel spacing with the measured phase noise of -114 dBc/Hz and -141 dBc/Hz at 100-kHz and 1.25-MHz offsets, respectively, in the PCS band. The fractional spurious tone at 10-kHz offset is under -54 dBc.  相似文献   

20.
In direct digital synthesizer (DDS) applications, the drawback of the conventional delta sigma (/spl Delta//spl Sigma/) modulator structure is that its signal band is fixed. In the new architecture presented in this paper, the signal band of the /spl Delta//spl Sigma/ modulator is tuned according to the DDS output frequency. We use a hardware-efficient phase-to-sine amplitude converter in the DDS that approximates the first quadrant of the sine function with 16 equal-length piecewise second-degree polynomial segments. The DDS is capable of frequency, phase, and quadrature amplitude modulation. The die area of the chip is 2.02 mm/sup 2/ (0.13 /spl mu/m CMOS technology). The total power consumption is 138 mW at 1.5 V with an output frequency of 63.33 MHz at a clock frequency of 200 MHz (D/A converter full-scale output current: 11.5 mA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号