首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding kinetics of methyl alpha- and methyl beta-D-galactopyranoside to the anti-T lectin from peanuts were studied by 13C NMR, employing methyl galactopyranosides specifically enriched in 13C at C-1. Association and dissociation rate constants, as well as their activation parameters, are reported. The association rate constants, 4.6 X 10(4) M-1 s-1 for the alpha-galactopyranoside and 3.6 X 10(4) M-1 s-1 for the beta-galactopyranoside, are several orders of magnitude below those expected for a diffusion-controlled process. For both anomers, the association rate constant was temperature independent, implying that the association process occurs without a significant activation enthalpy. However, a considerable association activation entropy was found for both ligands. The dissociation rate constants were in the range of 9-46 s-1 within a temperature range of 5-35 degrees C for the alpha-galactopyranoside, and in the range of 9-39 s-1 within a temperature range of 5-25 degrees C for the beta-galactopyranoside. A considerable dissociation activation enthalpy of ca. 10 kcal mol-1 was found for both anomers. A two-step binding model, consistent with the present NMR data and with previous UV and CD spectroscopic data, is presented.  相似文献   

2.
Prostaglandin H synthases (PGHSs) catalyze the conversion of arachidonic acid to prostaglandins. In this report, we describe the effect of a PGHS2 Y355F mutation on the dynamics of PGHS2 catalysis and inhibition. Tyr355 is part of a hydrogen-bonding network located at the entrance to the cyclooxygenase active site. The Y355F mutant exhibited allosteric activation kinetics in the presence of arachidonic acid that was defined by a curved Eadie-Scatchard plot and a Hill coefficient of 1.36 +/- 0.05. Arachidonic acid-induced allosteric activation has not been directly observed with wild type PGHS2. The mutation also decreased the observed time-dependent inhibition by indomethacin, flurbiprofen, RS-57067, and SC-57666. Detailed kinetic analysis showed that the Y355F mutation decreased the transition state energy associated with slow-binding inhibition (EIdouble dagger) relative to the energy associated with catalysis (ESdouble dagger) by 1.33, 0.67, and 1.06 kcal/mol, respectively, for indomethacin, flurbiprofen, and RS-57067. These observations show Tyr355 to be involved in the molecular mechanism of time-dependent inhibition. We interpret these results to indicate that slow binding inhibitors and the Y355F mutant slow the rate and unmask intrinsic, dynamic events associated with product formation. We hypothesize that the dynamic events are the equilibrium between relaxed and tightened organizations of the hydrogen-bonding network at the entrance to the cyclooxygenase active site. It is these rearrangements that control the rate of substrate binding and ultimately the rate of prostaglandin formation.  相似文献   

3.
The bimolecular association rate constant (kon) and dissociation rate constant (koff) of the complex between fluorescein-labeled S-peptide analogues and folded S-protein are reported. This is the first kinetic study of a protein folding reaction in which most of the starting material is already folded and only a small part (one additional helix) becomes ordered; it provides a folding landscape with a small conformational entropy barrier, and one in which kinetic traps are unlikely. Refolding and unfolding are measured under identical strongly native conditions, and the reaction is found to be two-state at low reactant concentrations. The dissociation constant (Kd) of the complex and the properties of the transition state may be calculated from the rate constants without extrapolation. The folded complex is formed fast (kon = 1.8 x 10(7) M-1 s-1) and is very stable (Kd = 6 pM) at 10 degrees C, 10 mM MOPS, pH 6.7. Charge interactions stabilize the complex by 1.4 kcal mol-1. The charge effect enters in the refolding reaction: increasing the salt concentration reduces kon dramatically and has little effect on koff. Urea and GdmCl destabilize the complex by decreasing kon and increasing koff. The slopes (m-values) of plots of ln Kd vs [cosolvent] are 0.75 +/- 0.04 and 2.8 +/- 0.3 kcal mol-1 M-1 for urea and GdmCl, respectively. The ratio mon/(mon + moff) is 0.54 +/- 0.04 for urea and 0.57 +/- 0.1 for GdmCl, where mon is the m-value for kon and moff is the m-value for koff, indicating that more than half of the sites for interaction with either cosolvent are buried in the ensemble of structures present at the transition state.  相似文献   

4.
The kinetics of saccharide binding to the treatment form of concanavalin A have been studies at pH 7.2 with the temperature-jump method. 4-Methylumbelliferyl alpha-D-mannopyranoside was used as a ligand; its fluorescence is totally quenched upon binding. A single relaxation of ligand fluorescence (tau = 20-400 ms) was observed and was investigated at three different temperatures, using kinetic titration and dilution types of experiments. The concentration dependence of the relaxation time and amplitude was consistent with a single-step bimolecular association and independent binding sites. In the temperature range 13-24 degrees C the association and dissociation rate parameters are in the range (6-10) X 10(4) M-1 s-1 and (1.4-3.2)s-1 respectively, corresponding to activation energies for the forward and reverse reactions equal to approx. 13 and 8 kcal/mol (54 and 33 kJ/mol) respectively. Two additional relaxations of protein fluorescence (3 ms and larger than 1 s at 25 degrees C) were unaffected by carbohydrate binding. Tetrameric concanavalin A shows carbohydrate binding parameters that are almost identical to those of native or derivatized dimeric concanavalin A.  相似文献   

5.
Thermodynamic quantities for the binding of MgADP, CaADP and Ca2+ to purified beef cardiac myosin have been determined by flow calorimetry at 25 degrees C and by equilibrium dialysis at 4 degrees C in 0.5 M KCl, 20 mM tris-HCl (pH 7.5). About 1.65 +/- 0.15 mol MgADP and 1.9 +/- 0.1 mol CaADP were bound per mol myosin. Free energies of binding of MgADP and CaADP were -6.7 and -5.7 kcal/mol, respectively. Enthalpies for binding of MgADP and CaADP were about -12.5 and -19.0 kcal/mol, respectively. Furthermore, there were 1.8 +/- 0.2 mol high affinity Ca2+ binding sites per mol myosin with an affinity constant of about 10(5) M-1. The enthalpy of Ca2+ binding was about zero. It is concluded that CaADP binds to cardiac myosin with a much greater negative enthalpy than MgADP. Also, the free energy of MgADP binding to cardiac myosin is similar to values reported for skeletal myosin. However, the enthalpy of binding is much less negative than the value obtained for skeletal myosin by Kodama and Woledge (J. Biol. Chem. (1976) 251, 7499--7503). The latter results suggest a subtle difference in the nucleotide binding sites of these myosins.  相似文献   

6.
The kinetic properties of the ba3 oxidase from Thermus thermophilus were investigated by stopped-flow spectroscopy in the temperature range of 5-70 degrees C. Peculiar behavior in the reaction with physiological substrates and classical ligands (CO and CN-) was observed. In the O2 reaction, the decay of the F intermediate is significantly slower (k' = 100 s-1 at 5 degrees C) than in the mitochondrial enzyme, with an activation energy E of 10.1 +/- 0.9 kcal mol-1. The cyanide-inhibited ba3 oxidizes cyt c522 quickly (k approximately 5 x 10(6) M-1 s-1 at 25 degrees C) and selectively, with an activation energy E of 10.9 +/- 0.9 kcal mol-1, but slowly oxidizes ruthenium hexamine, a fast electron donor for the mitochondrial enzyme. Cyt c552 oxidase activity is enhanced up to 60 degrees C and is maximal at extremely low ionic strengths, excluding formation of a high-affinity cyt c522-ba3 electrostatic complex. The thermophilic oxidase is less sensitive to cyanide inhibition, although cyanide binding under turnover is much quicker (seconds) than in the fully oxidized state (days). Finally, the affinity of reduced ba3 for CO at 20 degrees C (Keq = 1 x 10(5) M-1) was found to be smaller than that of beef heart aa3 (Keq = 4 x 10(6) M-1), partly because of an unusually fast, strongly temperature-dependent CO dissociation from cyt a32+ of ba3 (k' = 0.8 s-1 vs k' = 0.02 s-1 for beef heart aa3 at 20 degrees C). The relevance of these results to adaptation of respiratory activity to high temperatures and low environmental O2 tensions is discussed.  相似文献   

7.
The significance of site-specific phosphorylation by protein kinase C (PKC) isozymes alpha and delta and protein kinase A (PKA) of troponin I (TnI) and its phosphorylation site mutants in the regulation of Ca(2+)-stimulated MgATPase activity of reconstituted actomyosin S-1 was investigated. The genetically defined TnI mutants used were T144A, S43A/S45A, S43A/S45A/T144A (in which the PKC phosphorylation sites Thr-144 and Ser-43/Ser-45 were respectively substituted by Ala) and N32 (in which the first 32 amino acids in the NH2-terminal sequence containing Ser-23/Ser-24 were deleted). Although the PKC isozymes displayed different substrate phosphorylation kinetics, PKC-alpha phosphorylated equally well TnI wild type and all mutants, whereas N32 was a much poorer substrate for PKC-delta. Furthermore, the two PKC isozymes exhibited discrete specificities in phosphorylating distinct sites in TnI and its mutants, either as individual subunits or as components of the reconstituted troponin complex. Unlike PKC-alpha, PKC-delta favorably phosphorylated the PKA-preferred site Ser-23/Ser-24 and hence, like PKA, reduced the Ca2+ sensitivity of the reconstituted actomyosin S-1 MgATPase. In contrast, PKC-alpha preferred to phosphorylate Ser-43/Ser-45 (common sites for all isozymes) and thus reduced the maximal Ca(2+)-stimulated activity of the MgATPase. In this respect, PKC-delta, by cross-phosphorylating the PKA sites, functioned as a hybrid of PKC-alpha and PKA. The site specificities and hence functional differences between PKC-alpha and -delta were most evident at low phosphorylation (1 mol of phosphate/mol) of TnI wild type and were magnified when S43A/S45A and N32 were used as substrates. The present study has demonstrated, for the first time, that distinct functional consequences could arise from the site-selective preferences of PKC-alpha and -delta for phosphorylating a single substrate in the myocardium, i.e., TnI.  相似文献   

8.
The enzymatic properties and the three-dimensional structure of spinach glycolate oxidase which has the active-site Tyr129 replaced by Phe (Y129F glycolate oxidase) has been studied. The structure of the mutant is unperturbed which facilitates interpretation of the biochemical data. Y129F glycolate oxidase has an absorbance spectrum with maxima at 364 and 450 nm (epsilon max = 11400 M-1 cm-1). The spectrum indicates that the flavin is in its normal protonated form, i.e. the Y129F mutant does not lower the pKa of the N(3) of oxidized flavin as does the wild-type enzyme [Macheroux, P., Massey, V., Thiele, D. J., and Volokita, M. (1991) Biochemistry 30, 4612-4619]. This was confirmed by a pH titration of Y129F glycolate oxidase which showed that the pKa is above pH 9. In contrast to wild-type glycolate oxidase, oxalate does not perturb the absorbance spectrum of Y129F glycolate oxidase. Moreover oxalate does not inhibit the enzymatic activity of the mutant enzyme. Typical features of wild-type glycolate oxidase that are related to a positively charged lysine side chain near the flavin N(1)-C(2 = O), such as stabilization of the anionic flavin semiquinone and formation of tight N(5)-sulfite adducts, are all conserved in the Y129F mutant protein. Y129F glycolate oxidase exhibited about 3.5% of the wild-type activity. The lower turnover number for the mutant of 0.74 s-1 versus 20 s-1 for the wild-type enzyme amounts to an increase of the energy of the transition state of about 7.8 kJ/mol. Steady-state analysis gave Km values of 1.5 mM and 7 microM for glycolate and oxygen, respectively. The Km for glycolate is slightly higher than that found for wild-type glycolate oxidase (1 mM) whereas the Km for oxygen is much lower. As was the case for wild-type glycolate oxidase, reduction was found to be the rate-limiting step in catalysis, with a rate of 0.63 s-1. The kinetic properties of Y129F glycolate oxidase provide evidence that the main function of the hydroxyl group of Tyr129 is the stabilization of the transition state.  相似文献   

9.
The oncofetal fibronectin (B-FN) isoform is present in vessels of neoplastic tissues during angiogenesis but not in mature vessels. B-FN could therefore provide a target for diagnostic imaging and therapy of cancer. Phage display libraries have been used to isolate human antibody fragments with pan-species recognition of this isoform. We describe the use of these fragments in nude mice to target an aggressive tumor (grafted F9 murine teratocarcinoma). Imaging in real time was done by infrared photodetection of a chemically coupled fluorophore. The targeting was improved by use of affinity-matured fragments with low kinetic dissociation rates (koff = 1.5 x 10(-4) s-1) and also by engineering dimeric fragments via a C-terminal amphipathic helix.  相似文献   

10.
We have devised a procedure using monovalent phage display to select for stable mutants in the pro-domain of the serine protease, subtilisin BPN'. In complex with subtilisin, the pro-domain assumes a compact structure with a four-stranded antiparallel beta-sheet and two three-turn alpha-helices. When isolated, however, the pro-domain is 97% unfolded. These experiments use combinatorial mutagenesis to select for stabilizing amino acid combinations at a particular structural locus and determine how many combinations are close to the maximum protein stability. The selection for stability is based on the fact that the independent stability of the pro-domain is very low and that binding to subtilisin is thermodynamically linked to folding. Two libraries of mutant pro-domains were constructed and analyzed to determine how many combinations of amino acids at a particular structural locus result in the maximum stability. A library comprises all combinations of four amino acids at a structural locus. Previous studies using combinatorial genetics have shown that many different combinations of amino acids can be accommodated in a selected locus without destroying function. The present results indicate that the number of sequence combinations at a structural locus, which are close to the maximum stability, is small. The most striking example is a selection at an interior locus of the pro-domain. After two rounds of phagemid selection, one amino acid combination is found in 40% of sequenced mutants. The most frequently selected mutant has a deltaG(unfolding) = 4 kcal/mol at 25 degrees C, an increase of 6 kcal/mol relative to the naturally occurring sequence. Some implications of these results on the amount of sequence information needed to specify a unique tertiary fold are discussed. Apart from possible implications on the folding code, the phage display selection described here should be useful in optimizing the stability of other proteins, which can be displayed on the phage surface.  相似文献   

11.
Random mutagenesis and screening for enzymatic activity has been used to engineer horse heart myoglobin to enhance its intrinsic peroxidase activity. A chemically synthesized gene encoding horse heart myoglobin was subjected to successive cycles of PCR random mutagenesis. The mutated myoglobin gene was expressed in Escherichia coli LE392, and the variants were screened for peroxidase activity with a plate assay. Four cycles of mutagenesis and screening produced a series of single, double, triple, and quadruple variants with enhanced peroxidase activity. Steady-state kinetics analysis demonstrated that the quadruple variant T39I/K45D/F46L/I107F exhibits peroxidase activity significantly greater than that of the wild-type protein with k1 (for H2O2 oxidation of metmyoglobin) of 1. 34 x 10(4) M-1 s-1 ( approximately 25-fold that of wild-type myoglobin) and k3 [for reducing the substrate (2, 2'-azino-di-(3-ethyl)benzthiazoline-6-sulfonic acid] of 1.4 x 10(6) M-1 s-1 (1.6-fold that of wild-type myoglobin). Thermal stability of these variants as measured with circular dichroism spectroscopy demonstrated that the Tm of the quadruple variant is decreased only slightly compared with wild-type (74.1 degreesC vs. 76.5 degreesC). The rate constants for binding of dioxygen exhibited by the quadruple variant are identical to the those observed for wild-type myoglobin (kon, 22.2 x 10(-6) M-1 s-1 vs. 22.3 x 10(-6) M-1 s-1; koff, 24.3 s-1 vs. 24.2 s-1; KO2, 0.91 x 10(-6) M-1 vs. 0.92 x 10(-6) M-1). The affinity of the quadruple variant for CO is increased slightly (kon, 0.90 x 10(-6) M-1s-1 vs. 0.51 x 10(-6) M-1s-1; koff, 5.08 s-1 vs. 3.51 s-1; KCO, 1.77 x 10(-7) M-1 vs. 1.45 x 10(-7) M-1). All four substitutions are in the heme pocket and within 5 A of the heme group.  相似文献   

12.
In order to determine the thermodynamic cost of introducing a polar group within the core of a protein, a series of nine Ala-->Ser and 3 Val-->Thr substitutions was constructed in T4 lysozyme. The sites were all within alpha-helices but ranged from fully solvent-exposed to totally buried. The range of destabilization incurred by the Ala-->Ser substitutions was found to be very similar to that for the Val-->Thr replacements. For the solvent-exposed and partly exposed sites the destabilization was modest (approximately less than 0.5 kcal/mol). For the completely buried sites the destabilization was larger, but variable (approximately 1-3 kcal/mol). Crystal structure determinations showed that the Ala-->Ser mutant structures were, in general, very similar to their wild-type counterparts, even though the replacements introduce a hydroxyl group. This is in part because the introduced serines are all within alpha-helices and at congested sites can avoid steric clashes with surrounding atoms by making a hydrogen bond to a backbone carbonyl oxygen in the preceding turn of the helix. The three substituted threonine side chains essentially superimpose on their valine counterparts but display somewhat larger conformational adjustments. The results illustrate how a protein structure will adapt in different ways to avoid the presence of an unsatisfied hydrogen bond donor or acceptor. In the most extreme case, Val 149-->Thr, which is also the most destabilizing variant (delta delta G = 2.8 kcal/mol), a water molecule is incorporated in the mutant structure in order to provide a hydrogen-bonding partner. The results are consistent with the view that many hydrogen bonds within proteins contribute only marginally to stability but that noncharged polar groups that lack a hydrogen-bonding partner are very destabilizing (delta delta G approximately greater than 3 kcal/mol). Supportive of other studies, the alpha-helix propensity of alanine is seen to be higher than that of serine (delta delta G = 0.46 +/- 0.04 kcal/mol), while threonine and valine are similar in alpha-helix propensity.  相似文献   

13.
Heats of CO and IHP binding to hemoglobin A have been determined under a variety of buffer and pH conditions. From these data heats of ion binding linked to hemoglobin oxygenation have been estimated. For IHP binding to deoxyhemoglobin the buffer-corrected enthalpies are surprisingly large, reaching -25 kcal/mol of IHP at pH 7.4. These values correspond to approximately -11 kcal/mol of proton absorbed upon IHP binding and may rise largely from the protonation of hitidine and NH2-terminal groups in the binding site (Arnone, A., and Perutz, M.F. (1974) Nature 249, 34-36). The decreased magnitude of delta HIHP observed at low pH parallels the decreased proton uptake at low pH. In 0.1 M chloride (pH 7.4) the reaction Hb(aq) + IHP leads to Hb x IHP(aq) has a standard free energy change (Edalji, R., Benesch, R.E., and Benesch, R. (1976) J. Biol. Chem. 251, 7720-7721) of -10 kcal and an enthalpy change of -25 kcal. Therefore, enthalpic forces provide the dominant driving force of this process. The origin of these large negative enthalpy changes is attributed to the exothermic protonation of protein basic groups induced by the proximity of phosphate negative charges. The importance of protonation in the binding of organic phosphates to hemoglobin may well extend to the specific binding of other phosphate substrates to enzyme reaction sites.  相似文献   

14.
Thermal and chemical unfolding of lipid-free apolipoprotein C-1 (apoC-1), a 6-kDa protein component of very low density and high-density lipoproteins, was analyzed by far-UV CD. In neutral 1 mM Na2HPO4 solutions containing 6-7 micrograms/mL protein, the apoC-1 monomer is approximately 30% alpha-helical at 0-22 degrees C and unfolds reversibly from about 22-80 degrees C with Tm = 51 +/- 3 degrees C and van't Hoff enthalpy delta Hv(Tm) = 19 +/- 3 kcal/mol. The apparent free energy of the monomer stabilization determined from the chemical unfolding at 0 degree C, delta G(0 degree C) = 2.8 +/- 0.8 kcal/mol, decreases by about 1 kcal/mol upon heating to 25 degrees C. A small apparent heat capacity increment suggests the absence of a substantial hydrophobic core for the apoC-1 molecule. At pH 7, increasing apoC-1 concentration above 10 micrograms/mL leads to self-association and formation of additional alpha-helices that unfold upon both heating and cooling from room temperature. The CD data indicate that the high-temperature transition reflects a complete monomer unfolding and the low-temperature transition reflects oligomer dissociation into stable monomers. This suggests the importance of hydrophobic interactions for apoC-1 self-association. Close proximity between the high- and low-temperature transitions and the absence of a plateau in the chemical unfolding curves recorded from oligomeric apoC-1 indicate marginal oligomer stability and suggest that in vivo apoC-1 transfer is mediated via the complexes with other apolipoproteins and/or lipids.  相似文献   

15.
The structure and thermotropic properties of N-palmitoyl sphingomyelin (C16:0-SM) and its interaction with cholesterol and dipalmitoylphosphatidylcholine (DPPC) have been studied by differential scanning calorimetry (DSC) and X-ray diffraction methods. DSC of hydrated multi-bilayers of C16:0-SM shows reversible chain-melting transitions. On heating, anhydrous C16:0-SM exhibits an endothermic transition at 75 degrees C (delta H = 4.0 kcal/mol). Increasing hydration progressively lowers the transition temperature (TM) and increases the transition enthalpy (delta H), until limiting values (TM = 41 degrees C, delta H = 7.5 kcal/mol) are observed for hydration values > 25 wt % H2O. X-ray diffraction at temperatures below (29 degrees C) TM show a bilayer gel structure (d = 73.5 A, sharp 4.2 A reflection) for C16:0-SM at full hydration; above TM, at 55 degrees C, a bilayer liquid-crystal phase is present (d = 66.6 A, diffuse 4.6 A reflection). Addition of cholesterol to C16:0-SM bilayers results in a progressive decrease in the enthalpy of the transition at 41 degrees C, and no cooperative transition is detected at > 50 mol % cholesterol. X-ray diffraction shows no difference in the bilayer periodicity, position/width of the wide-angle reflections, or electron density profiles at 29 and 55 degrees C when 50 mol % cholesterol is present. Thus, cholesterol inserts into C16:0-SM bilayers progressively removing the chain-melting transition and changing the structural characteristics of the bilayer. DSC and X-ray diffraction data show that DPPC is completely miscible with C16:0-SM bilayers in both the gel and liquid-crystalline phases; however, 30 mol % C16:0-SM removes the pre-transition exhibited by DPPC.  相似文献   

16.
The known mammalian 3':5'-cyclic nucleotide phosphodiesterases (PDEs) contain a conserved region located toward the carboxyl terminus, which constitutes a catalytic domain. To identify amino acids that are important for catalysis, we introduced substitutions at 23 conserved residues within the catalytic domain of the cGMP-binding cGMP-specific phosphodiesterase (cGB-PDE; PDE5). Wild-type and mutant proteins were compared with respect to Km for cGMP, kcat, and IC50 for zaprinast. The most dramatic decrease in kcat was seen with H643A and D754A mutants with the decrease in free energy of binding (DeltaDeltaGT) being about 4.5 kcal/mol for each, which is within the range predicted for loss of a hydrogen bond involving a charged residue. His643 and Asp754 are conserved in all known PDEs and are strong candidates to be directly involved in catalysis. Substitutions of His603, His607, His647, Glu672, and Asp714 also produced marked changes in kcat, and these residues are likely to be important for efficient catalysis. The Y602A and E775A mutants exhibited the most dramatic increases in Km for cGMP, with calculated DeltaDeltaGT of 2.9 and 2.8 kcal/mol, respectively, that these two residues are important for cGMP binding in the catalytic site. Zaprinast is a potent competitive inhibitor of cGB-PDE, but the key residues for its binding differ significantly from those that bind cGMP.  相似文献   

17.
Human HLA B27-restricted cytotoxic T lymphocytes (CTL) specific for the influenza A epitope NP383-391 use similar TCR alpha and beta chains, with two closely related J alpha segments used by six of nine CTL clones from three unrelated donors (Bowness et al., Eur J. Immunol. 1993. 23: 1417-1421). The role of TCR complementarity-determining region (CDR)3alpha residues 93 and 100-102 was examined by site-directed mutagenesis, following expression of the TCR alpha and beta extracellular domains from one clone as a TCR zeta fusion heterodimer in rat basophil leukemia (RBL) cells. For the first time we have measured direct binding of tetrameric HLA B*2705/NP383-391 complexes to transfected TCR. Independently peptide-pulsed antigen-presenting cells (APC) were used to induce TCR-mediated degranulation of RBL transfectants. Our results show a key role for the conserved TCRalpha CDR3 J alpha-encoded residue Y102 in recognition of HLA B27/NP383-391. Thus the Y102D mutation abolished both tetramer binding and degranulation in the presence of peptide-pulsed APC. Even the Y102F mutation, differing only by a single hydroxyl group from the native TCR, abolished detectable degranulation. Further mutations F93A and S100R also abolished recognition. Interestingly, the N101A mutation recognized HLA B27/NP in functional assays despite having significantly reduced tetramer binding, a finding consistent with "kinetic editing" models of T cell activation. Modeling of the GRb TCR CDR3alpha loop suggests that residue Y102 contacts the HLA B*2705 alpha1 helix. It is thus possible that selection of germ-line TCRAJ-encoded residues at position 102 may be MHC driven.  相似文献   

18.
The biotin-binding site of streptavidin was modified to alter its ligand-binding specificity. In natural streptavidin, the side chains of N23 and S27 make two of the three hydrogen bonds with the ureido oxygen of biotin. These two residues were mutated to severely weaken biotin binding while attempting to maintain the affinity for two biotin analogs, 2-iminobiotin and diaminobiotin. Redesigning of the biotin-binding site used the difference in local electrostatic charge distribution between biotin and these biotin analogs. Free energy calculations predicted that the introduction of a negative charge at the position of S27 plus the mutation N23A should disrupt two of the three hydrogen bonds between natural streptavidin and the ureido oxygen of biotin. In contrast, the imino hydrogen of 2-iminobiotin should form a hydrogen bond with the side chain of an acidic amino acid at position 27. This should reduce the biotin-binding affinity by approximately eight orders of magnitude, while leaving the affinities for these biotin analogs virtually unaffected. In good agreement with these predictions, a streptavidin mutant with the N23A and S27D substitutions binds 2-iminobiotin with an affinity (Ka) of 1 x 10(6) M-1, two orders of magnitude higher than that for biotin (1 x 10(4) M-1). In contrast, the binding affinity of this streptavidin mutant for diaminobiotin (2.7 x 10(4) M-1) was lower than predicted (2.9 x 10(5) M-1), suggesting the position of the diaminobiotin in the biotin-binding site was not accurately determined by modeling.  相似文献   

19.
Thermal denaturation of the B form of double-stranded DNA has been probed by differential scanning calorimetry (DSC) and Raman spectroscopy of 160 base pair (bp) fragments of calf thymus DNA. The DSC results indicate a median melting temperature Tm = 75.5 degrees C with calorimetric enthalpy change delta Hcal = 6.7 kcal/mol (bp), van't Hoff enthalpy change delta HVH = 50.4 kcal/mol (cooperative unit), and calorimetric entropy change delta Scal = 19.3 cal/deg.mol (bp), at the experimental conditions of 55 mg DNA/ml in 5 mM sodium cacodylate at pH 6.4. The average cooperative melting unit (nmelt) comprises 7.5 bp. The Raman signature of 160 bp DNA is highly sensitive to temperature. Analyses of several conformation-sensitive Raman bands indicate the following ranges for thermodynamic parameters of melting: 43 < delta HVH < 61 kcal/mol (cooperative unit), 75 < Tm < 80 degrees C and 6 < (nmelt) < 9 bp, consistent with the DSC results. The changes observed in specific Raman band frequencies and intensities as a function of temperature reveal that thermal denaturation is accompanied by disruption of Watson-Crick base pairs, unstacking of the bases and disordering of the B form backbone. These three types of structural change are highly correlated throughout the investigated temperature range of 20 to 93 degrees C. Raman bands diagnostic of purine and pyrimidine unstacking, conformational rearrangements in the deoxyribose-phosphate moieties, and changes in environment of phosphate groups have been identified. Among these, bands at 834 cm-1 (due to a localized vibration of the phosphodiester group), 1240 cm-1 (thymine ring) and 1668 cm-1 (carbonyl groups of dT, dG and dC), are shown by comparison with DSC results to be the most reliable quantitative indicators of DNA melting. Conversely, the intensities of Raman marker bands at 786 cm-1 (cytosine ring), 1014 cm-1 (deoxyribose ring) and 1092 cm-1 (phosphate group) are largely invariant to melting and are proposed as appropriate standards for intensity normalizations.  相似文献   

20.
The stability of the N-terminal domain of the ribosomal protein L9, NTL9, from Bacillus stearothermophilus has been monitored by circular dichroism at various temperatures and chemical denaturant concentrations in H2O and D2O. The basic thermodynamic parameters for the unfolding reaction, deltaH(o), deltaS(o), and deltaC(o)p, were determined by global analysis of temperature and denaturant effects on stability. The data were well fit by a model that assumes stability varies linearly with denaturant concentration and that uses the Gibbs-Helmholtz equation to model changes in stability with temperature. The results obtained from the global analysis are consistent with information obtained from individual thermal and chemical denaturations. NTL9 has a maximum stability of 3.78 +/- 0.25 kcal mol(-1) at 14 degrees C. DeltaH(o)(25 degrees C) for protein unfolding equals 9.9 +/- 0.7 kcal mol(-1) and TdeltaS(o)++(25 degrees C) equals 6.2 +/- 0.6 kcal mol(-1). DeltaC(o)p equals 0.53 +/- 0.06 kcal mol(-1) deg(-1). There is a small increase in stability when D2O is substituted for H2O. Based on the results from global analysis, NTL9 is 1.06 +/- 0.60 kcal mol(-1) more stable in D2O at 25 degrees C and Tm is increased by 5.8 +/- 3.6 degrees C in D2O. Based on the results from individual denaturation experiments, NTL9 is 0.68 +/- 0.68 kcal mol(-1) more stable in D2O at 25 degrees C and Tm is increased by 3.5 +/- 2.1 degrees C in D2O. Within experimental error there are no changes in deltaH(o) (25 degrees C) when D2O is substituted for H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号