首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glass‐ceramics are widely utilized in the electronics industry to provide electrical insulation and to form leak‐tight joints with a range of metals. The coefficient of thermal expansion (CTE) of the glass‐ceramic can be controlled by the extent of crystallization to reduce detrimental tensile stresses in the joint. In recent years, there has been interest in using titanium alloys, in place of stainless steels, due to their lower density and superior specific strength. In this study, the heat treatment of a strontium boroaluminate glass has been tailored to create glass‐ceramics with mean CTEs ranging from 5.7 ± 0.1 × 10?6/K to 9.7 ± 0.1 × 10?6/K over the temperature range 303–693 K. The resultant glass‐ceramic consists of three crystalline phases and residual glass. A glass‐ceramic with a mean CTE of 6.9 ± 0.1 × 10?6/K was subsequently fabricated to form a compression seal with a Ti–6Al–4V housing and a preoxidized Kovar pin. Single pin assemblies were shown to be reproducible in terms of microstructure and all passed a standard helium leak test, indicating that a successful seal had been produced.  相似文献   

2.
Barium silicate glasses with 0‐40 mol% BaO were synthesized either by aerodynamical levitation and laser heating (at low barium content) or by conventional melting and quenching process. Characterization by means of Raman scattering spectroscopy and scanning transmission electron microscopy reveals a structural transition between glasses with low BaO content (<10 mol%) showing an atomic network resembling the one of amorphous silica, and glasses with a BaO content larger than 10 mol%, which exhibit the typical signature of a binary silicate glass with Q2 and Q3 units. Viscosity curves show a marked increase of the viscosity as the BaO content decreases below 20 mol%. Barium is found to easily diffuse and promote phase separation while silicon remains homogeneously distributed. A dramatic increase in the viscosity is observed as phase separation proceeds, resulting in the formation of Ba‐rich nodules in a percolating SiO2‐rich matrix at low barium content, or in Ba‐poor nodules in a BaO‐rich matrix at large barium content.  相似文献   

3.
The sequence of crystallization in a recrystallizable lithium silicate sealing glass‐ceramic Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO was analyzed by in situ high‐temperature X‐ray diffraction (HTXRD). Glass‐ceramic specimens have been subjected to a two‐stage heat‐treatment schedule, including rapid cooling from sealing temperature to a first hold temperature 650°C, followed by heating to a second hold temperature of 810°C. Notable growth and saturation of Quartz was observed at 650°C (first hold). Cristobalite crystallized at the second hold temperature of 810°C, growing from the residual glass rather than converting from the Quartz. The coexistence of quartz and cristobalite resulted in a glass‐ceramic having a near‐linear thermal strain, as opposed to the highly nonlinear glass‐ceramic where the cristobalite is the dominant silica crystalline phase. HTXRD was also performed to analyze the inversion and phase stability of the two types of fully crystallized glass‐ceramics. While the inversion in cristobalite resembles the character of a first‐order displacive phase transformation, i.e., step changes in lattice parameters and thermal hysteresis in the transition temperature, the inversion in quartz appears more diffuse and occurs over a much broader temperature range. Localized tensile stresses on quartz and possible solid‐solution effects have been attributed to the transition behavior of quartz crystals embedded in the glass‐ceramics.  相似文献   

4.
A widely adopted approach to form matched seals in metals having high coefficient of thermal expansion (CTE), e.g. stainless steel, is the use of high CTE glass‐ceramics. With the nucleation and growth of Cristobalite as the main high‐expansion crystalline phase, the CTE of recrystallizable lithium silicate Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO glass‐ceramic can approach 18 ppm/°C, matching closely to the 18 ppm/°C–20 ppm/°C CTE of 304L stainless steel. However, a large volume change induced by the α‐β inversion between the low‐ and high‐ Cristobalite, a 1st order displacive phase transition, results in a nonlinear step‐like change in the thermal strain of glass‐ceramics. The sudden change in the thermal strain causes a substantial transient mismatch between the glass‐ceramic and stainless steel. In this study, we developed new thermal profiles based on the SiO2 phase diagram to crystallize both Quartz and Cristobalite as high expansion crystalline phases in the glass‐ceramics. A key step in the thermal profile is the rapid cooling of glass‐ceramic from the peak sealing temperature to suppress crystallization of Cristobalite. The rapid cooling of the glass‐ceramic to an initial lower hold temperature is conducive to Quartz crystallization. After Quartz formation, a subsequent crystallization of Cristobalite is performed at a higher hold temperature. Quantitative X‐ray diffraction analysis of a series of quenched glass‐ceramic samples clearly revealed the sequence of crystallization in the new thermal profile. The coexistence of two significantly reduced volume changes, one at ~220°C from Cristobalite inversion and the other at ~470°C from Quartz inversion, greatly improves the linearity of the thermal strains of the glass‐ceramics, and is expected to improve the thermal strain match between glass‐ceramics and stainless steel over the sealing cycle.  相似文献   

5.
Barium sodium niobate (BNN) glass‐ceramics were successfully synthesized through a controlled crystallization method, using both a conventional and a microwave hybrid heating process. The dielectric properties of glass‐ceramics devitrified at different temperatures and conditions were measured. It was found that the dielectric constant increased with higher crystallization temperature, from 750°C to 1000°C, and that growth of the crystalline phase above 900°C was essential to enhancing the relative permittivity and overall energy storage properties of the material. The highest energy storage was found for materials crystallized conventionally at 1000°C with a discharge energy density of 0.13 J/cm3 at a maximum field of 100 kV/cm. Rapid microwave heating was found to not give significant enhancement in dielectric properties, and coarsening of the ferroelectric crystals was found to be critical for higher energy storage.  相似文献   

6.
We prepared chemically stoichiometric, S‐poor and S‐rich Ge–Ga–S glasses and annealed them at a temperature that was 20°C higher than its respective glass transition temperature. We aimed at tuning the formation of the different crystals in chalcogenide glass‐ceramics. Through systematic characterization of the structure using X‐ray diffraction and Raman scattering spectra, we found that, GeS2 and GeS crystals only can be created in S‐rich and S‐poor glass‐ceramics, respectively, while all GeS, Ga2S3, and GeS2 crystals exist in chemically stoichiometric glass‐ceramics. Moreover, we demonstrated the homogeneous distribution of the crystals can be formed in the S‐rich glass‐ceramics from the surface to the interior via composition designing. The present approach blazes a new path to control the growth of the different crystals in chalcogenide glass‐ceramics.  相似文献   

7.
The present paper deals with the synthesis of porous, sintered glass‐ceramics obtained at temperatures below 1150°C, originating from inorganic polymers based on fayalite slag. Firing led to the evaporation of water, dehydroxylation, and oxidation of Fe2+ above 345°C. For heating >700°C, the Si–O stretching band shifted from the 1160 and 750 cm?1 to the 1255 and 830 cm?1 region, due to a structural reorganization of the amorphous phase, whereas Fe–O bands appeared at 550 cm?1. The final microstructure consisted predominantly of an amorphous phase, hematite, and franklinite. The open porosity and compressive strength decreased and increased, respectively, as the firing temperature increased. The final values suggest properties comparable to that of structural lightweight concrete, still, the materials synthesized herein, are lighter, and made primarily from secondary resources.  相似文献   

8.
Dense (~98.5%), lithium aluminum silicate glass‐ceramics were obtained via the sinter‐crystallization of glass particle compacts at relatively low temperatures, that is, 790–875°C. The effect of P2O5 on the glass‐ceramics' sinter‐crystallization behavior was evaluated. We found that P2O5 does not modify the surface crystallization mechanism but instead delays the crystallization kinetics, which facilitates viscous flow sintering. Our glass‐ceramics had virgilite (LixAlxSi3‐xO6; 0.5 < x < 1), a crystal size <1 μm, and a linear thermal expansion coefficient of 2.1 × 10?6°C?1 in the temperature range 40–500°C. The overall heat treatment to obtain these GCs was quite short, at ~25 min.  相似文献   

9.
Transparent glass‐ceramics containing Er3+:CaF2 crystallites were prepared with the co‐firing method. The formation process of the glass‐ceramics was investigated by means of SEM, XRD, and DSC. The results reveal that the Er3+:CaF2 nanocrystals do not dissolve into the fluorophosphates (FP) glassmelt until the co‐firing temperature increase higher than about 920°C. Below this temperature, Er3+:CaF2 survives the co‐firing process and the nanocrystals just grow to spherical crystals of micrometers in size. Co‐firing temperature higher than this temperature leads to the dissolution of Er3+:CaF2 and the dissolved Er3+:CaF2 recrystallized during quenching process and takes the shape of dendrite.  相似文献   

10.
Lithium ion conductors with garnet‐type structure are promising candidates for applications in all solid‐state lithium ion batteries, because these materials present a high chemical stability against Li metal and a rather high Li+ conductivity (10?3–10?4 S/cm). Producing densified Li‐ion conductors by lowering sintering temperature is an important issue, which can achieve high Li conductivity in garnet oxide by preventing the evaporation of lithium and a good Li‐ion conduction in grain boundary between garnet oxides. In this study, we concentrate on the use of sintering additives to enhance densification and microstructure of Li7La3ZrNbO12 at sintering temperature of 900°C. Glasses in the LiO2‐B2O3‐SiO2‐CaO‐Al2O3 (LBSCA) and BaO‐B2O3‐SiO2‐CaO‐Al2O3 (BBSCA) system with low softening temperature (<700°C) were used to modify the grain‐boundary resistance during sintering process. Lithium compounds with low melting point (<850°C) such as LiF, Li2CO3, and LiOH were also studied to improve the rearrangement of grains during the initial and middle stages of sintering. Among these sintering additives, LBSCA and BBSCA were proved to be better sintering additives at reducing the porosity of the pellets and improving connectivity between the grains. Glass additives produced relative densities of 85–92%, whereas those of lithium compounds were 62–77%. Li7La3ZrNbO12 sintered with 4 wt% of LBSCA at 900°C for 10 h achieved a rather high relative density of 85% and total Li‐ion conductivity of 0.8 × 10?4 S/cm at room temperature (30°C).  相似文献   

11.
A simple technique to characterize the structure of nonuniform glass‐ceramics is proposed. The technique is based in micro‐Raman spectroscopy. This technique allows determining the gradient of average size of crystalline grains in the subsurface layers of glass‐ceramics modified by ion exchange.  相似文献   

12.
13.
A combined experimental investigation and thermodynamic assessment was performed for the BaO‐CaO‐Al2O3 system. By using a high‐temperature equilibration/quenching technique and scanning electron microscopy, electron probe microanalysis, and X‐ray powder diffraction analysis, the phase equilibria at 1500°C and phase stability of BaCa2Al8O15 phase were determined. An extensive literature survey was conducted for the experimental and thermodynamic modeling data of the BaO‐CaO‐Al2O3 system. According to the literature data and the present measurements, a thermodynamic assessment was made in order to obtain a set of self‐consistent thermodynamic parameters to describe the BaO‐CaO‐Al2O3 system. Based on the thermodynamic parameters acquired in this work, isothermal sections at 1100°C, 1250°C, 1400°C, 1475°C, and 1500°C and the BaO·Al2O3‐CaO·Al2O3 and BaO·6Al2O3‐CaO·6Al2O3 joints were calculated and compared with the available experimental data.  相似文献   

14.
The effects of Nd2O3 content (0–12 wt %) on crystalline phases, microstructure, and chemical durability of barium borosilicate glass‐ceramics belonging to SiO2–B2O3–Na2O–BaO–CaO–TiO2–ZrO2–Nd2O3 system were studied. The results show that the glass‐ceramics with 2–6 wt% of Nd2O3 possess mainly zirconolite and titanite phases along with a small amount baddeleyite phase in the bulk. Calcium titanate appears when the Nd2O3 content increases to 8 wt%, and the amount of quadrate calcium titanate crystals increases with further increasing content of Nd2O3. For the glass‐ceramics with 6 wt% Nd2O3 (Nd‐6), Nd elements homogeneously distribute in zirconolite, titanite, and residual glass phases. There is a strong enrichment of Nd in calcium titanate crystals for the sample with 10 wt% Nd2O3. The viscosity of Nd‐6 glass is about 49 dPa·s at 1150°C. Moreover, Nd‐6 glass‐ceramics show the lower normalized leaching rates of B (LRB), Ca (LRCa), and Nd (LRNd) when compared to that of the sample with 8 wt% Nd2O3. After 42 days, LRB, LRCa, and LRNd of the Nd‐6 glass‐ceramics are about 6.8 × 10?3, 1.6 × 10?3, and 4.4 × 10?6 g·m?2·d?1, respectively.  相似文献   

15.
Discharged energy properties of PbO–SrO–Na2O–Nb2O5–SiO2 glass‐ceramics with crystallization time from 1 to 1000 min were investigated by measuring their hysteresis loops (described as quasi‐static measuring method) and pulse‐discharge current‐time curves (described as dynamic measuring method). The results show the same trend for both measuring methods: With the increment of crystallization time, the discharged energy density increases gradually, while the energy efficiency decreases. The highest energy efficiencies were obtained in the sample with crystallization time of 1 min, which are 96.3% and 82.4%, corresponding quasi‐static and dynamic measurement, respectively. The reduction of energy efficiency with crystallization time is attributed to combined effect of ferroelectric polarization and interfacial polarization, and part of the corresponding energy could not release in the pulse‐discharge process.  相似文献   

16.
A phase diagram‐assisted powder processing approach is shown to produce low‐oxygen (0.06 wt%O) ZrB2 ceramics using minimal B4C additions (0.25 wt%) and spark plasma sintering. Scanning electron microscopy and scanning transmission electron microscopy with elemental spectroscopy are used to identify “trash collector” oxides. These “trash collector” oxides are composed of manufacturer metal powder impurities that form discreet oxide particles due to the absence of standard Zr–B oxides found in high oxygen samples. A preliminary Zr–B–C–O quaternary thermodynamic database developed as a part of this work was used to calculate the ZrO2–B4C pseudobinary phase diagram and ZrB2–ZrO2–B4C pseudoternary phase diagrams. We use the calculated equilibrium phase diagrams to characterize the oxide impurities and show the direct reaction path that allows for the formation of ZrB2 with an oxygen content of 0.06 wt%, fine grains (3.3 μm) and superior mechanical properties (flexural strength of 660 MPa).  相似文献   

17.
Through a careful composition design, new oxyfluoride glass‐ceramics (GCs) containing BaLiF3 nanocrystals with sizes of around 30 nm were prepared. Microstructural characterizations show interpenetrating phase separation in the sample with a composition of 15BaF2–15ZnF2–70SiO2, after thermal treatment at 580°C for 40 h which leads to the nanocrystallization of BaLiF3. The BaLiF3 nanocrystals embedded in the glassy matrix could provide Ba or Li sites for the incorporation of optically active rare earth and transition‐metal ions, which provides a possibility to explore novel photonic properties by the codoping of rare earth and transition‐metal ions in GC materials.  相似文献   

18.
Rare‐earth‐doped upconversion nano‐phosphor shows new possibilities in the field of bioimaging because of its unique properties like higher penetration depth, low signal to noise ratio (SNR), good photo stability, and zero auto fluorescence. The oxyfluoride glass system is the combination of both fluoride and oxide where fluoride host offers high optical transparency due to low phonon energy and oxide network offers high physical stability. Thus, in the present work, an attempt has been made to synthesize 1 mol% Er3+ doped SiO2‐CaF2 glass ceramic nano‐particles through sol‐gel route. The synthesized glass ceramic particles were heat treated at 4 different temperatures starting from 600°C to 900°C.The X‐ray diffraction (XRD) analysis and Transmission electron microscopy (TEM) analysis confirmed the formation of CaF2 nano‐crystals in the matrix which is 20‐30 nm in size. The vibrational spectroscopic analysis of the glass ceramics sample has been investigated by Fourier transform infrared (FTIR) spectroscopy. The UV‐Visible‐NIR spectroscopy analysis was carried out to analyze the absorption intensity in the near infrared region. Upon 980 nm excitation, the sample shows red emission corresponds to 4F9/24I15/2 energy level transition. The prepared nano‐particles showed excellent biocompatibility when tasted on MG‐63 osteoblast cells.  相似文献   

19.
Functional porous materials require easy fabrication methods with controllability of a wide range of pore size and its density for practical applications including optical devices. The Kirkendall effect based on unbalanced material diffusion provides such a possibility in conjunction with material configurations of multilayers. This study reports a formation of nanoscale pores within ZnO films in planar multilayered structures of Al2O3–ZnO‐aluminosilicate glass and demonstrates the mechanism of forming relatively large nanopores in ZnO near the ZnO–glass interface via stress‐promoted Kirkendall diffusion. Experimental characterizations supported by atomic simulation reveal that an enhanced in‐plane tensile stress in the ZnO films with increasing the thickness of the neighboring Al2O3 films can promote the diffusivity of the Zn atoms and the pore growth in the ZnO films. The pore size and location in the intermediate ZnO layer of the Al2O3–ZnO–glass is alterable by simply selecting the thickness of the Al2O3 layer. Promoted diffusion of the Zn atoms enables to fabricate porous planar ZnO films with pore sizes up to a few hundred nm with an enhanced light scattering ability. These findings offer a promising route to produce porous planar films through in‐depth understanding of diffusivity enhancement in glass–metal oxide couples.  相似文献   

20.
Thermal mechanical stresses of glass‐ceramic to stainless steel (GCtSS) seals are analyzed using finite element modeling over a temperature cycle from a set temperature (Tset) 500°C to ?55°C, and then back to 600°C. Two glass‐ceramics having an identical coefficient of thermal expansion (CTE) at ~16 ppm/°C but very different linearity of thermal strains, designated as near‐linear NL16 and step‐like SL16, were formed from the same parent glass using different crystallization processes. Stress modeling reveals much higher plastic strain in the stainless steel using SL16 glass‐ceramic when the GCtSS seal cools from Tset. Upon heating tensile stresses start to develop at the GC‐SS interface before the temperature reaches Tset. On the other hand, the much lower plastic deformation in stainless steel accumulated during cooling using NL16 glass‐ceramic allows for radially compressive stress at the GC‐SS interface to remain present when the seal is heated back to Tset. The qualitative stress comparison suggests that with a better match of thermal strain rate to that of stainless steel, the NL16 glass‐ceramic not only improves the hermeticity of the GCtSS seals, but would also improve the reliability of the seals exposed to high‐temperature and/or high‐pressure abnormal environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号