首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adding nickel inclusions into alumina can enhance its strength and toughness. However, the oxidation resistance of alumina is degraded due to the presence of metallic nickel. In the present study, the oxidation kinetics of Ni-toughened Al2O3 in the temperature region from 1000 to 1300 °C are investigated. In the Al2O3/Ni composites, the Ni inclusions are isolated to each other within the Al2O3 matrix as the Ni content is less than 15 vol.%. The oxidation of the composites is mainly a diffusional process, nickel ions diffuse out and oxygen ions diffuse in. A dense NiAl2O4 spinel is formed on the surface of the composite after oxidation. The oxidation rate constants of the alumina incorporated with isolated Ni inclusions are in a comparable range with those of hot-pressed silicon nitride.  相似文献   

2.
Directed bonding with Al and Al2O3 was achieved using a transient liquid phase (TLP) method after annealing at the low melting point of Al, which deposited Ni, Cu, Ge, and Si on the Al2O3 substrate. Al/Al2O3 microstructures were evaluated using a scanning electron microscopy and transmission electron microscopy. A reaction layer was absent at the Al/Al2O3 interface, and all deposited metal films dissolved into the Al foil and reacted with Al to form an eutectic liquid phase near the interface to wet and join with the Al2O3. Al9Fe2 and Al3Fe intermetallic compounds were formed in the Al substrate because of Fe precipitation, which is an impurity of Al foil, and the reaction with Al at the grain boundaries of Al. The bonding area percentage, shear strength, and thermal conductivity for Al and Al2O3 were assessed using scanning acoustic tomography (SAT), the ISO 13 124 shear strength test, and the laser flash method, respectively. The Al/Al2O3 specimen deposited with the Ni film had the highest shear strength (33.74 MPa), thermal conductivity (42.3 W/mK), and bonding area percentage (96.78%). The Al/Al2O3 specimens deposited with Ge and Si exhibited relatively poor bonding because of the oxidation of Ge and Si at the surface of Al2O3 before bonding with Al.  相似文献   

3.
Ni/Al2O3 catalysts were prepared by the spray reaction method. The NiO particles supported on NiAl2O4 were stabilized against the aggregation and converted into smaller Ni particles by H2 reduction. The Ni particles stabilized on NiAl2O4 marked anomalous high activity for CO hydrogenation, due to the stronger interaction between Ni and NiAl2O4. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Engineering sophisticated structure of Al2O3 and controlling the structure of counterpart metal active sites remain challenges to achieve a high catalytic-performance in heterogeneous catalysis. Herein, we present a confinement strategy to stabilize homogeneous Ni by penta-coordinated Al3+ anchoring sites in Al2O3. This approach is involved in using a metal–organic framework as host to load Ni2+ ions, by the aim of producing a confined Ni/Al2O3 catalyst after a standard calcination. Metal–support interaction between Ni and Al2O3 was tailored to be medium to avoid the formation of inactive NiAl2O4, which favors the generation of more available Ni active sites accessible to the reactants. The resultant Ni/Al2O3 exhibited superior catalytic performance in comparison with the control Ni/Al2O3 in CO methanation owing to the presence of defective sites on sufficient Ni0 surface. Furthermore, the presence of oxygen vacancies on Al2O3 and hydrogen spillover contributed toward excellent coke resistance properties in the reaction.  相似文献   

5.
C. R. He  W. G. Wang 《Fuel Cells》2009,9(5):630-635
The Al2O3–Ni–YSZ (Y2O3 stabilised ZrO2) anode materials with 0–6 wt% Al2O3 were prepared by tape casting method after being ball‐milled for 48 h. The influence of Al2O3 content on flexural strength, electrical conductivity, open porosity, relative density and thermal expansion coefficient (TEC) of Al2O3–Ni–YSZ anode was investigated. The introduction of Al2O3 significantly enhances the flexural strength of Al2O3–Ni–YSZ anode. The flexural strengths of 430 and 299 MPa are achieved for the specimen containing 0.25 wt% Al2O3 before and after reduction, respectively, while the flexural strengths are 201 and 237 MPa for the Ni–YSZ samples. The density decreases with increasing Al2O3 content and the open porosity increases correspondingly, after being sintered at 1350 °C for 4 h. The electrical conductivity at ambient temperature does not fall off when Al2O3 content is less than 1 wt%, but decreases rapidly when the content is above 3 wt% due to the formation of NiAl2O4. A maximum electrical conductivity of 1418 S cm–1 is obtained in the sample containing 0.5 wt% Al2O3. The TEC of the samples decreases with the introduction of Al2O3 in the temperature range of 20–850 °C.  相似文献   

6.
A series of γ‐Al2O3‐supported nickel‐based catalysts were evaluated in continuous hydrogenation of toluene. Sr‐ and poly(ethylene glycol) 800 (PEG800)‐modified Ni/γ‐Al2O3 catalysts provided the best activity with high conversion of toluene and selectivity for methylcyclohexane which was ascribed to the addition of Sr and PEG800 during the preparation process, resulting in smaller and highly dispersed Ni species on the surface and in the pores of γ‐Al2O3. Furthermore, the formation of SrCO3 and NiAl2O4 is believed to be advantageous for the dispersion and stabilization of the active Ni species, accounting for its good stability.  相似文献   

7.
A nickel (Ni) nanoparticle catalyst, supported on 4‐channel α‐Al2O3 hollow fibers, was synthesized by atomic layer deposition (ALD). Highly dispersed Ni nanoparticles were successfully deposited on the outside surfaces and the inside porous structures of hollow fibers. The catalyst was employed to catalyze the dry reforming of methane (DRM) reaction and showed a methane reforming rate of 2040 Lh?1gNi?1 at 800°C. NiAl2O4 spinel was formed when Ni nanoparticles were deposited on alpha‐alumina substrates by ALD, which enhanced the Ni‐support interaction. Different cycles (two, five, and ten) of Al2O3 ALD films were applied on the Ni/hollow fiber catalysts to further improve the interaction between the Ni nanoparticles and the hollow fiber support. Both the catalyst activity and stability were improved with the deposition of Al2O3 ALD films. Among the Al2O3 ALD coated catalysts, the catalyst with five cycles of Al2O3 ALD showed the best performance. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2625–2631, 2018  相似文献   

8.
The role of microstructure in affecting the fatigue crack growth resistance of grain bridging silicon nitride ceramics doped with rare earth (RE = Y, La, Lu) oxide sintering additives was investigated. Three silicon nitride ceramics were prepared using MgO‐RE2O3 and results were compared with a commercial Al2O3‐Y2O3‐doped material. Decreasing stress intensity range (ΔK) fatigue tests were conducted using compact‐tension specimens to measure steady‐state fatigue crack growth rates. Specimens doped with MgO‐RE2O3 additives showed a significantly higher resistance to crack growth than those with Al2O3‐Y2O3 additives and this difference was attributed to the much higher grain aspect ratio for the MgO‐RE2O3‐doped ceramics. When the crack growth data were normalized with respect to the total contribution of toughening by bridging determined from the monotonically loaded R‐curves, the differences in fatigue resistance were greatly reduced with the data overlapping considerably. Finally, all of the MgO‐RE2O3‐doped silicon nitrides displayed similar steady‐state fatigue crack growth behavior suggesting that they are relatively insensitive to the intergranular film.  相似文献   

9.
Oxidation of NiAl/α-Al2O3 composites provides the metamorphic surface layers consisting of boundary NiAl2O4 and Al2O3 grains with compressive stress. Strengthening and toughening from 515 MPa and 4 MPa m1/2 (sintered) to ∼655 MPa and ∼6 MPa m1/2 (oxidized) are enabled by a controlled development of the metamorphic layers at 1200–1300 °C. The reactivity of an oxidation product, NiO, with the matrix-Al2O3 and the rapid diffusion along the grain boundary repairs the damages on surfaces by filling and re-bonding the defects and cracks. The oxidation further progresses via the repaired defects to develop the metamorphic layers supporting them to enhance the recovery of the strength. The degraded strength of the material with defects, 150 MPa, is recovered to 531 MPa by the reparation against the limited recovery to 343 MPa by a thermal healing in Ar.  相似文献   

10.
Oxidation induced crack healing of Al2O3 composites loaded with a MAX phase based repair filler (Ti2Al0.5Sn0.5C) was examined. The fracture strength of 20 vol% repair filler loaded composites containing artificial indent cracks recovered fully to the level of the virgin material upon isothermal annealing in air atmosphere after 48 h at 700°C and 0.5 h at 900°C. SEM‐EBSD analysis of crack microstructure indicates two different oxidation reaction regimes to govern the crack filling: near the surface SnO2, TiO2, and Al2O3 were formed whereas deeply inside the cracks Al2O3 and TiO2 and metallic Sn were detected. The presence of elemental Sn was attributed to partial oxidation of aluminum and titanium which lowered the local oxygen concentration below a threshold value required for Sn oxidation to SnO2. Thus, Ti2Al0.5Sn0.5C may represent an efficient repair filler system to trigger oxidation induced crack healing in ceramic composites at temperatures below 1000°C.  相似文献   

11.
《Ceramics International》2022,48(18):26028-26041
Multilayered C–Si–Al coatings with various morphologies were deposited on carbon fibers (CFs) using magnetron sputtering. The thickness of the coatings was increased from 0.5 to 1.5 μm by magnetron sputtering between 90 and 120 min. C–Si–Al coatings of suitable thickness were heat-treated at 600 °C and transformed into C–Si–Al2O3 coatings by one-step anodic oxidation (AO). The oxidation time for the one/two-step anodic oxidation and the ratio of oxidation time for the two-step anodic oxidation significantly influenced the morphologies of the C–Si–Al2O3(AO) coatings. Al2O3 coatings with satisfactory morphologies and structures were prepared by two-step anodic oxidation with a total time of 30 min and a ratio of 1:1 between the initial and secondary oxidation times. The multilayered C–Si–Al2O3(AO) coatings were modified to C–Si–Al2O3 coatings by secondary heat treatment at 1050 °C. Subsequently, hot-press sintering was used to prepare CFs with multilayered C–Si–Al2O3 coating-reinforced hydroxyapatite (CF/C–Si–Al2O3/HA) composites. The multilayered C–Si–Al2O3-coated CFs demonstrated good resistance to oxidation and thermal shock. This could effectively protect CFs from oxidative damage and maintain its strengthening effect during sintering. The multilayered C, Si, and Al2O3 coatings effectively reduced the difference between the coefficient of thermal expansion of the CFs and HA matrixes. The interfacial gaps between the multilayered coatings and HA were reduced. This could enhance the mechanical performance of the composites. The CF/C–Si–Al2O3/HA composites exhibited improved mechanical properties with a bending strength of 83.94 ± 12.29 MPa, and fracture toughness of 2.45 ± 0.08 MPa m1/2. This study can broaden the application of CF/C–Si–Al2O3/HA biocomposites as bone-repair materials and help obtain CF-reinforced composites with excellent mechanical properties that are fabricated or serviced at high temperatures.  相似文献   

12.
This work reports the oxidation and crack healing behavior of a fine‐grained (~2 μm) Cr2AlC MAX phase ceramic. The oxidation behavior was investigated in the temperature range 900°C–1200°C for times up to 100 h. The material showed a good oxidation resistance, owing to the formation of a dense and thin α‐Al2O3 layer. The microstructure, composition and thickness of the oxide scale were characterized. Its oxidative crack healing behavior as a function of temperature, healing time, and initial crack size was studied systematically. The material showed excellent healing behavior. The main crack healing mechanism is the filling of the crack by oxides well adhering to the crack faces. The crack geometry before and after healing was characterized by X‐ray tomography. Three‐point bend tests showed the dependence of strength recovery at 1100°C as a function of initial crack length and healing time.  相似文献   

13.
Hydrogen production by partial oxidation and steam reforming (POSR) of n‐octane was investigated over alumina‐supported Ni and Ni‐Pd catalysts. It showed that Ni‐Pd/Al2O3 had higher activity and hydrogen selectivity than the nickel catalyst under the experimental conditions, which indicated Ni‐Pd/Al2O3 could be an effective catalyst for the production of hydrogen from hydrocarbons.  相似文献   

14.
The influence of metallic Ni or NiAl2O4 as a reinforcing particle on grain growth and wear resistance in alumina matrix composites was evaluated. Alumina composites with various Ni or NiAl2O4 concentrations were prepared by multiple-infiltrations of Ni-nitrate into bisque-fired (necked) alumina green bodies followed by heat treatment and sintering at 1600 °C for 2 h. Sintering in a reducing environment resulted in composites with metallic Ni nanoparticles, while NiAl2O4 alumina composites were formed when sintering in air. The addition of Ni or NiAl2O4 resulted in a reduction in alumina grain size after sintering. The material response to abrasive wear was estimated by measuring the time to section samples of a defined area using a diamond wafering saw and was compared to the wear resistance of undoped alumina. In both cases, reinforcing alumina with Ni or NiAl2O4 particles resulted in a significant increase in wear resistance, correlated to the reduced grain size.  相似文献   

15.
The mutual confinement of ceramics and metals in laminated composites tends to change the original properties of ceramics and metals. In this study, two kinds of laminated composites, Al2O3/Ti and Al2O3/Ti/Ni, were prepared. Three-point bending experiments revealed that Al2O3/Ti underwent brittle fracture after elastic deformation. The fracture morphology analysis revealed that the Ti in Al2O3/Ti became brittle due to the formation of columnar crystals. The temperature gradient perpendicular to the direction of laminations during preparation was responsible for the formation of columnar crystals. The force–displacement curves of the Al2O3/Ti/Ni combine the properties of elastic deformation of ceramics and plastic deformation of metals. The reason why the Al2O3/Ti/Ni did not fracture completely in the bending experiments is that Ni maintained the toughness, and there is a good interfacial bond among Al2O3, Ti, and Ni. The indentation crack analysis revealed that cracks have long transverse propagation and short longitudinal propagation in both laminated composites. Finite element analysis revealed that this was due to compressive stress in the Al2O3 layer and tensile stress in the metal layer. This compressive stress consumes the crack energy in the longitudinal direction and stops the crack in the metal layer. The brittle to ductile gradient transition among Al2O3, Ti, and Ni, combined with the guidance of crack propagation direction by the interfacial layer, enhances the ability of Al2O3/Ti/Ni to resist damage.  相似文献   

16.
The activity of a novel Ni‐Re/Al2O3 catalyst toward partial oxidation of methane was investigated in comparison with that of a precious‐metal Rh/Al2O3 catalyst. Reactions involving CH4/O2/Ar, CH4/H2O/Ar, CH4/CO2/Ar, CO/O2/Ar, and H2/O2/Ar were performed to determine the kinetic expressions based on indirect partial oxidation scheme. A mathematical model comprising of Ergun equation as well as mass and energy balances with lumped indirect partial oxidation network was applied to obtain the kinetic parameters and then used to predict the reactant and product concentrations as well as temperature profiles within a fixed‐bed microreactor. H2 and CO production as well as H2/CO2 and CO/CO2 ratios from the reaction over Ni‐Re/Al2O3 catalyst were higher than those over Rh/Al2O3 catalyst. Simulation revealed that much smoother temperature profiles along the microreactor length were obtained when using Ni‐Re/Al2O3 catalyst. Steep hot‐spot temperature gradients, particularly at the entrance of the reactor, were, conversely, noted when using Rh/Al2O3 catalyst. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1691–1701, 2018  相似文献   

17.
The dynamics of the reduction reaction of NixMg1?xAl2O4 to form nickel metal and a remnant oxide was quantified to understand spinel behavior in catalysis applications. X‐ray diffraction, thermogravimetry, and pycnometry were employed to track the evolution of high‐Ni spinels to metastable nonstiochiometric spinels during reduction, but before the phase transformation to theta alumina. Rietveld refinements of X‐ray diffraction data were used to quantify structural changes in the spinel and the phase fraction, crystallite size, and microstrain of all phases during H2 reduction. During reduction, one O2? is lost for each Ni2+ reduced to Ni metal. Ni0.25Mg0.75Al2O4 and Ni0.5Mg0.5Al2O4 were shown to form Ni metal and a non‐stoichiometric spinel of the same Mg‐Al ratio as the starting composition. NiAl2O4 and Ni0.75Mg0.25Al2O4 were found to become unstable as full reduction was approached, and metastable spinel, Θ‐Al2O3, and α‐Al2O3 formed sequentially given sufficient time at temperature.  相似文献   

18.
The electronic (band) structure of polycrystalline Al2O3, in particular the density of near‐band edge grain‐boundary localized states, plays a significant role in a host of high‐temperature phenomena, including sintering, high‐temperature creep, oxygen permeability in dense “dry” Al2O3 ceramics, and Al2O3 scale formation on Al2O3 scale‐forming alloys. All these phenomena involve creation or annihilation of charged point defects (vacancies and/or interstitials) at grain boundaries and interfaces, and must of necessity involve electrons and holes. Thus, the density of states associated with grain boundaries in Al2O3 assume great importance, and has been calculated using DFT for both nominally undoped and Y‐doped Σ7 bi‐crystal boundaries. These quantum mechanical calculations must be taken into account when considering why Y2O3 segregation to Al2O3 grain boundaries is so effective in enhancing high‐temperature creep resistance of polycrystalline Al2O3, and in understanding the reactive element effect in Al2O3 scale‐forming alloys. Finally, a case will be made that grain‐boundary diffusion is mediated by the migration of a class of grain‐boundary ledge defects called disconnections, which are characterized by a step height h and a Burgers vector b.  相似文献   

19.
Atomic force microscopy was used to measure the dimensions of grain‐boundary thermal grooves on the surfaces of Al2O3, 100 ppm Y‐doped Al2O3, and 500 ppm Y‐doped Al2O3 ceramics heated at temperatures between 1350°C and 1650°C. The measurements were used to estimate the relative grain‐boundary energies as a function of temperature. The relative grain‐boundary energies of Al2O3 decrease slightly with increased temperature. When the doped samples were heated, there was an overall increase in the grain‐boundary energy, attributed to a reduction in the grain boundary excess at higher temperature. The overall trend of increasing grain‐boundary energy was interrupted by abrupt reductions in grain‐boundary energy between 1450°C and 1550°C. In the same temperature range, there is an abrupt increase in the grain‐boundary mobility that is associated with a complexion transition. When the 100 ppm Y‐doped sample was cooled, there was a corresponding increase in the relative grain‐boundary energy at the same complexion transition temperature, indicating that the transition is reversible.  相似文献   

20.
Crack healing behavior of hot-pressed TZ3Y20A-SiC ceramics has been investigated by high-temperature oxidation. Semi-elliptical surface cracks with a length of 100 μm have been set on the tensile side of each specimen using a Vickers hardness indenter. Based on flexural strength and observations of crack appearance, the effect of crack healing is finally judged. Cracks on ZrO2(Y2O3)–Al2O3 (TZ3Y20A) ceramics cannot be healed by heat treatment. However, for TZ3Y20A-SiC ceramics, complete crack-healing has been realized by heat treatment at 800 °C, 1000 °C and 1100 °C for 30 h, 10 h and 5 h, respectively. The crack-healing mechanism is attributed to the formation of SiO2 caused by high temperature oxidation during heat treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号