首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of single‐phase tantalum hafnium carbide (TaxHf1?xC, 0<x<1) solid solution nanopowders via carbothermal reduction (CTR) reaction is complicated due to the difference in reactivity of parent oxides with carbon and presence of a miscibility gap in TaC‐HfC phase diagram below ~887°C. These can lead to phase separation, ie, formation of two distinct carbides instead of a single‐phase solid solution. In this study, nanocrystalline TaxHf1?xC powders were synthesized via CTR of finely mixed amorphous tantalum‐hafnium oxide(s) and carbon obtained from a low‐cost aqueous solution processing of tantalum pentachloride, hafnium tetrachloride, and sucrose. Particular emphasis was given to investigate the influences of starting compositions and processing conditions on phase separation during the formation of carbide phase(s). It was found that due to the immiscibility of Ta‐Hf oxides and relatively fast CTR reaction, individual nano‐HfC and TaC phases form quickly (within minutes at 1600°C), then go through interdiffusion forming carbide solid solution phase. Moreover, the presence of excess carbon in the CTR product slows down the interdiffusion of Ta and Hf dramatically and delays the solid solution formation, whereas DC electrical field (applied through the use of a spark plasma sintering system) accelerates interdiffusion significantly but leads to more grain growth.  相似文献   

2.
Tantalum hafnium carbide ((Ta0.8,Hf0.2)C) powders were successfully synthesized using a modified spark plasma sintering (SPS) apparatus with TaC/HfC or Ta2O5/HfO2/C starting materials. The (Ta0.8,Hf0.2)C obtained from the carbides had a finer particle size of 220 nm, whereas those obtained from the oxides had less contamination during the milling process (0.35 wt%) than the other case. Particle coarsening of the solid‐solution phase was effectively suppressed by using a modified SPS apparatus because of the fast heating/cooling rate. High‐energy ball milling promoted a solid‐solution reaction for the formation of (Ta0.8,Hf0.2)C by refining the size and inducing the homogeneous mixing of the starting materials. By the combination of the fast heating and high‐energy ball milling, fine tantalum hafnium carbide powders with low contamination were successfully synthesized.  相似文献   

3.
《Ceramics International》2016,42(6):7118-7124
Tantalum carbide (TaC) was synthesized by polycondensation and carbothermal reduction reactions from an inorganic hybrid. Tantalum pentachloride (TaCl5) and phenolic resin were used as the sources of tantalum and carbon, respectively. FTIR of as-synthesized dried complexes revealed formation of Ta-O. Pyrolysis of the complexes at 800 °C/1 h under argon resulted in tantalum oxide which after heat treatment at 1000–1200 °C transformed to tantalum carbide. The mean crystallite size of the precursor-derived TaC ceramics was less than 40 nm and Ta and C elements were homogeneously distributed in the ceramic samples. Mechanism for formation of TaC ceramic was analyzed.  相似文献   

4.
Nanoscale Ta4HfC5 ceramics were synthesized from curing and pyrolysis of novel polymer precursors which were synthesized by cohydrolysis and polycondensation of acetyl acetone coordinated tantalum alkoxide and hafnium alkoxide followed by blending with phenolic resin as carbon source. Pyrolysis of the polymer precursor at 1600 °C in vacuum produced Ta4HfC5 nanocrystallites with an average grain size of 21 nm and well-distributed elements, encapsulated by an amorphous carbon shell. Near full dense Ta4HfC5 monoliths can be prepared by spark plasma sintering (SPS) at 1600 °C with 10 vol% MoSi2 as an additive, of which the Vicker micro-hardness and flexural strength achieved 17.58 GPa and 466 MPa, respectively. The polymer precursor method shed light on the fabrication of ceramic matrix composites. Besides, the high electrical conductivity of 1.5 × 104 S/m entitled the ceramics to a prospective of utilization in microwave absorbing/shielding fields under harsh conditions.  相似文献   

5.
Thermodynamically stable (Hf1–xTax)C (x?=?0.1–0.3) compositions were selected by First Principle Calculation and synthesized in nanopowders via high-energy ball milling and carbothermal reduction of commercial oxides at 1450?°C. The formation of a solid solution during powder synthesis was investigated. The solid solution carbide powders were sintered at 1900?°C by spark plasma sintering without a sintering aid. As a result, the (Hf1–xTax)C solid solution carbides exhibited high densities, excellent hardness and fracture toughness (ρ: 98.7–100.0%, HVN: 19.69–19.98?GPa, KIC: 5.09–5.15?MPa?m1/2) compared with previously reported HfC and HfC–TaC solid solution carbides.  相似文献   

6.
Tantalum carbide (TaC) nanopowders were synthesized by a novel method combining the sol–gel and spark plasma sintering (SPS) processes using tantalum pentachloride (TaCl5) and phenolic resin as the sources of tantalum (Ta) and carbon (C), respectively. Gels of Ta-containing chelate with good uniformity and high stability were prepared by solution-based processing. The products with the structure of carbon-coated tantalum pentoxide (Ta2O5) were obtained after pyrolysis at 800?°C. Further heat treatment by SPS resulted in the fast formation of TaC at a relatively low temperature. The effects of the C/Ta molar ratio in the raw materials and the heat treatment temperature on the prepared powders were investigated. With increase in the C/Ta molar ratio from 3.75 to 4.25, the synthesis temperature, oxygen content and average crystallite size of the TaC powders decreased. Furthermore, the oxygen content of the powders prepared at the C/Ta molar ratio of 4.25 could be reduce by increasing the heat treatment temperature from 1400° to 1600°C, which unfortunately also induced a mean crystallite size increase from 30 to 100?nm. The TaC powders obtained at a comparatively low C/Ta molar ratios of 4.25 at 1500?°C had an average particle size of about 50?nm and a low oxygen content of about 0.43?wt%.  相似文献   

7.
Borothermal reduction processes of Ta2O5 with boron under vacuum were investigated. Ta2O5 reacted with boron to form various borides (TaB2, Ta3B4, and TaB), depending on the boron/Ta2O5 molar ratio and temperature. In order to prepare pure TaB2 powders, two routes were developed. The first route was one‐step heat treatment at 1550°C. With boron/Ta2O5 molar ratio of 9.0, pure TaB2 powders with strong agglomeration were synthesized by the first route, and the particle size and oxygen content were 0.7 μm and 0.9 wt%, respectively. The second route consisted of two‐step heat treatment at 800°C and 1550°C plus intermediate water washing. With lower boron/Ta2O5 molar ratio of 8.2, pure TaB2 powders with less agglomeration and more uniform distribution were synthesized by the second route, and the particle size and oxygen content were 0.8 μm and 0.8 wt%, respectively. Moreover, the particle size similarity of TaB2 powders by the two routes suggested that byproduct boron oxides, which were previously reported as the most important factor in promoting the coarsening of ZrB2 powders by borothermal reduction, did not lead to the significant coarsening of TaB2 powders.  相似文献   

8.
Solvothermal treatment was used to synthesize nanoscale 4TaC-HfC (Ta4HfC5) powder at a relatively low calcination temperature and in a short period (1400 °C, 2 h). The obtained powder had uniform size distribution and dispersion. Ta4HfC5 ceramics were then consolidated via spark plasma sintering at 2100 °C. Ceramics had a better densification and smaller mean grain size at a shorter sintering time compared with that of materials sintered using mechanical ball milling method. The densification behavior of ceramics deriving from synthesized or ball milled powders was analyzed and the mechanical properties of different samples were investigated. To further increase the mechanical properties, a nearly fully dense Ta4HfC5-MoSi2 ceramic was sintered using the synthesized powder. The mechanical properties of the ceramic composite doubled the strength values. This processing route demonstrated to be a viable approach to synthesize nanoscale Ta4HfC5 powder with high purity and uniformity, and obtain higher performances ceramics once sintered.  相似文献   

9.
Ta1?xHfxB2 material is attractive for various aerospace applications. In this study, 2 low‐cost approaches were adopted to synthesize nanocrystalline Ta0.5Hf0.5B2 solid solution and related composite powders. The first was based on carbothermal reduction reaction (CTR) of intimately mixed tantalum‐hafnium‐boron oxide(s) and carbon obtained from aqueous solution processing of TaCl5, HfCl4, B2O3, and sucrose as precursors. It was found that when using this method, due to the low solubility of each other for Ta2O5 and HfO2 and the difference in reactivity of those 2 oxides with carbon (as well as B2O3), individual TaB2 (‐rich) and HfB2 phases always form separately. Those borides tend to remain phase separated due to the slow inter‐diffusion between them. However, it was observed that addition of copper “catalyst” noticeably accelerates the inter‐diffusion and the solid solution formation. The second approach was based on alkali metal reduction reaction, in which TaCl5 and HfCl4 are directly reacted with sodium borohydride (NaBH4). This method yields a single phase Ta0.5Hf0.5B2 solid solution nanopowders in one step at much lower temperatures (e.g., 700°C) by avoiding the oxides formation and the associated phase separation of individual borides as observed in the CTR‐based process.  相似文献   

10.
A method for the preparation of tantalum carbide (TaC) coatings on tantalum by electrochemical reduction in carbonate ions in molten LiCl‐KCl was developed. Carbide coatings were obtained on the tantalum substrate at 900°C with a bias voltage of ?1.8 V versus the graphite counter electrode. The phase composition, morphology and strength of the carbide coating were characterized by XRD, SEM, and XPS analyses, as well as scratch testing. Kinetic mechanism for the formation of TaC coatings and evolution of chemical bonds between the carbide layer and substrate were schematically discussed. The coatings consist of a single phase of TaC with a thickness of approximately 5 μm. Ta2O5 and tantalate derivatives in molten salt restrict TaC formation. Electro‐deoxidation of Ta substrate can favorably eliminate tantalum‐involved compounds to produce TaC. TaC coatings improve the surface strength of Ta substrate obviously. The formation of a metal‐carbon solid solution in molten salt determines the existence of excess carbon on Ta substrate. Chemical bonds on the TaC coating were investigated in comparison with those at the interface of the metal‐oxygen‐carbon and carbon film.  相似文献   

11.
Tantalum pentoxide (Ta2O5) and its solid solution phases are candidate coatings for components to be used in combustion environments. Thus, it is important to understand the response of Ta2O5 to high‐temperature water vapor, a product of combustion. Thermogravimetric methods are used to examine the oxide in reactant streams of controlled water vapor contents at 1250°C‐1450°C. The observed weight loss indicates a reaction of the general form ½ Ta2O5(s) + x H2O(g)=TaOy(OH)x(g). Methodical variation in the water vapor pressure suggests the products are a mix of TaO(OH)3(g) and Ta(OH)5(g). Evidence of TaO(OH)3(g) was observed with a sampling mass spectrometer. The measured hydroxide and oxyhyroxide vapor fluxes from Ta2O5 are compared with calculated vapor fluxes from SiO2 and Al2O3. Ta2O5 exhibits fluxes similar to those from SiO2 due to gaseous metal hydroxide formation.  相似文献   

12.
《Ceramics International》2020,46(10):16068-16073
In this study, nonstoichiometric hafnium carbonitrides (HfCxNy) were fabricated via short-term (5 min) high-energy ball milling of Hf and C powders, followed by combustion of mechanically induced Hf/C composite particles in a nitrogen atmosphere (0.8 MPa). The obtained HfC0.5N0.35 powder exhibited a rock-salt crystal structure with a lattice parameter of 0.4606 nm. The melting point of this synthesized ceramic material was experimentally shown to be higher than that of binary hafnium carbide (HfC). The nonstoichiometric hafnium carbonitride was then consolidated under a constant pressure of 50 MPa at a temperature of 2000 °C and a dwelling time of 10 min, through spark plasma sintering. The obtained bulk ceramic material had a theoretical material density of 98%, Vickers hardness of 21.3 GPa, and fracture toughness of 4.7 MPa m1/2.  相似文献   

13.
An attractive way to prepare nanocrystalline tantalum zirconium carbide ternary ceramics was proposed and confirmed experimentally. The experimental results showed the Ta4ZrC5 powders were successfully fabricated by joint processes of solvothermal and carbothermal reaction. The thermodynamic change process in the Ta2O5-ZrO2-C system was studied. The reactions were substantially completed at relatively lower temperatures (∼1873 K/1 h) and the synthesized powders had a small average crystallite size (∼10 nm). The crystalline structure and the nitrogen sorption isotherms patterns of the product were studied. Besides, a monolithic Ta4ZrC5 ceramics was densified without sintering additives by pressureless sintering.  相似文献   

14.
15.
In this study, a Cf/Ta4HfC5-SiC ultra-high-temperature ceramic matrix composite exhibiting a homogeneous phase distribution was successfully fabricated via precursor infiltration and pyrolysis processing. Initially, the pyrolysis and solid solution mechanisms exhibited by the Ta4HfC5 precursor were investigated and characterized through TG-MS and XRD analysis. The as-fabricated Cf/Ta4HfC5-SiC composite exhibited a density and open porosity of 2.84 g/cm3 and 10.62 vol%, respectively. It also exhibited outstanding mechanical properties, with a flexural strength of 339 ± 20 MPa and fracture toughness of 11.56 ± 0.77 MPa·m1/2. The Cf/Ta4HfC5-SiC composite demonstrated strong ablation resistance under a heat flux of 5 MW/m2 at ~2400℃, with corresponding linear and mass recession rates of 5.33 μm/s and 6.18 mg/s, respectively. The combination of strong mechanical properties and ablation resistance provides a solid basis for the use of the Cf/Ta4HfC5-SiC composite in a new generation of ultra-high-temperature materials.  相似文献   

16.
A dual-phase high-entropy boride (HEB)/carbide (HEC) ceramic with a fine grain size was synthesized by a sequential boro/carbothermal process. In the first step, an Hf–Nb–Ta–Ti–Zr-containing carbide was synthesized by a carbothermal reduction of oxides followed by the reaction of the carbide with B4C and ZrH2 to convert part of the carbide to boride. The resulting composition was ∼29 vol% HEB with an average grain size of ∼1.1 μm. Solid solution formation occurred at the densification temperature of 1900°C resulting in a relative density higher than 99%. The Vickers hardness was 26.5 ± 1.4 GPa. This is the first report of synthesizing dual-phase boride–carbide high-entropy ceramics from carbothermally synthesized, HEC powders.  相似文献   

17.
《Ceramics International》2017,43(3):3431-3434
Nanocrystalline powders for high temperature ceramics (HTC) and ultrahigh temperature ceramics (UHTC) are important materials for aerospace and other important industrial applications. In this study, a low cost, single-step synthesis method for nanocrystalline HTC and UHTC powders is reported, which is based on high temperature spray pyrolysis (HTSP) process. The synthesis starts with solution of oxide and carbon precursors dissolved in common organic solvents, which are broken into fine droplets (e.g., via nebulizer). The droplets then go through processes of solvent removal, thermolysis, and rapid in situ carbothermal reduction (CTR), all in one single pass in a tube furnace operated at high temperature. The synthesis method was demonstrated successfully using the example of tantalum carbide (TaC) from precursors of tantalum chloride (TaCl5) and phenolic resin in a single-step HTSP process with maximum temperature of 1650 °C in one pass that finished within minutes, yielding agglomerated nanocrystalline TaC UHTC powders.  相似文献   

18.
Tantalum pentoxide (Ta2O5) nanoparticles with the sizes in the range of 20–50 nm were prepared via a chemical route in which the oleic acid (OLEA) was adopted as the surfactant for the synthesis process. X‐ray diffraction (XRD) revealed the as‐synthesized Ta2O5 transforms from amorphous to hexagonal and orthorhombic structures at the temperatures of 700°C and 750°C, respectively, illustrating the suppression of recrystallization temperature of Ta2O5 due to the particle size reduction. UV‐curable nanocomposites containing the Ta2O5 nanoparticles and acrylic matrix were also prepared. Thermogravimetry analysis (TGA) found an about 10–20°C improvement on the 5% weight‐loss thermal decomposition temperatures (Tds). Dielectric measurement showed that the dielectric constant of nanocomposite increases with the increase in the filler loading without severe deterioration of dielectric loss. The increment of dielectric constants was ascribed to the addition of high‐dielectric inorganic fillers as well as the presence of interfacial polarization at the organic/inorganic interfaces. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Ta4HfC5 powder was synthesized using TaCl5, HfCl4 and phenolic resin as raw materials. Then, Ta4HfC5–10 vol% MoSi2 ceramics and Ta4HfC5–10 vol% MoSi2 with different proportions of ZrB2 (10 – 30 vol%) ceramics were sintered by spark plasma sintering. Zr atoms substituted Ta and Hf atoms in Ta4HfC5 during the sintering process at 2000 °C. The sintering behavior and microstructure evolution upon the ceramics are discussed. The mechanical properties of the composites were improved compared to the pure Ta4HfC5 ceramics. The hardness of Ta4HfC5–MoSi2 with 30 vol% ZrB2 increased from around 10 GPa to almost 13 GPa, the flexural strength increased from around 245–435 MPa, and the fracture toughness increased from 2.56 ± 0.12 MPa?m1/2 to 4.46 ± 0.20 MPa?m1/2.  相似文献   

20.
In this study, nanosized Hf(C,N,O) ceramics were successfully prepared from a novel precursor synthesised by combining HfCl4 with ethylenediamine and dimethylformamide. Subsequently, the carbothermal reduction of these Hf(C,N,O) ceramics into hafnium carbide was investigated. The Hf(C,N,O) ceramics comprised Hf2ON2 and HfO2 nanocrystals and amorphous carbon. Upon carbothermal reduction, conversion began at 1300 °C, when HfC first appeared, and continued to completion at 1500 °C, resulting in irregularly shaped crystallites measuring 50–150 nm. Upon increasing the dwelling time, the oxides were completely converted into carbides at 1400 °C. Furthermore, nitrogen was introduced into the reaction to catalyse the conversion of oxides into carbides considering the beneficial gas–solid reaction between CO and Hf2ON2. We expect that the ceramics prepared in this study will be suitable for the fabrication of high-performance composite ceramics, with properties superior to those of current materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号