首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single‐step deposition of cobalt‐doped zinc oxide (Co‐ZnO) thin film nano‐composites on three different crystalline substrates, viz., Al2O3 (c‐sapphire), silicon (100) (Si), and SiO2 (quartz) is reported, using pulsed electron beam ablation (PEBA). The results indicate that the type of substrate has no effect on Co‐ZnO films stoichiometry, morphology, microstructure, and film thickness. The findings show the presence of hexagonal close‐packed metallic Co whose content increases in the films deposited on Al2O3 and Si substrates relatively to SiO2 substrate. The potential of the films as model nano‐catalysts has been evaluated in the context of the Fischer‐Tropsch (FT) process. Fuel fractions, which have been observed in FT liquid products, are rich in diesel and waxes. Specifically, Co‐ZnO/Al2O3 nano‐catalyst shows a selectivity of ~4%, 31%, and 65% towards gasoline, diesel, and waxes, respectively, while Co‐ZnO/SiO2 nano‐catalyst shows a selectivity of ~12%, 51%, and 37%, for gasoline, diesel, and waxes, respectively. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3332–3340, 2018  相似文献   

2.
The comparison of resistive switching (RS) storage in the same device architecture is explored for atomic layer deposition (ALD) Al2O3, HfO2 and HfAlOx‐based resistive random access memory (ReRAM) devices. Among them, the deeper high‐ and low‐ resistance states, more uniform VSETVRES, persistent ROFF/RON (>102) ratio and endurance up to 105 cycles during both DC and AC measurements were observed for HfAlOx‐based device. This improved behavior is attributed to the intermixing of amorphous Al2O3/HfO2 oxide layers to form amorphous thermally stable HfAlOx thin films by consecutive‐cycled ALD. In addition, the higher oxygen content at Ti/HfAlOx thin films interface was found within the energy dispersive spectroscopy analysis (EDS). We believe this higher oxygen content at the interface could lead to its sufficient storage and supply, leading to the stable filament reduction‐oxidation operation. Further given insight to the RS mechanism, SET/RESET power necessities and scavenging effect shed a light to the enhancement of HfAlOx‐based ReRAM device as well.  相似文献   

3.
A nickel (Ni) nanoparticle catalyst, supported on 4‐channel α‐Al2O3 hollow fibers, was synthesized by atomic layer deposition (ALD). Highly dispersed Ni nanoparticles were successfully deposited on the outside surfaces and the inside porous structures of hollow fibers. The catalyst was employed to catalyze the dry reforming of methane (DRM) reaction and showed a methane reforming rate of 2040 Lh?1gNi?1 at 800°C. NiAl2O4 spinel was formed when Ni nanoparticles were deposited on alpha‐alumina substrates by ALD, which enhanced the Ni‐support interaction. Different cycles (two, five, and ten) of Al2O3 ALD films were applied on the Ni/hollow fiber catalysts to further improve the interaction between the Ni nanoparticles and the hollow fiber support. Both the catalyst activity and stability were improved with the deposition of Al2O3 ALD films. Among the Al2O3 ALD coated catalysts, the catalyst with five cycles of Al2O3 ALD showed the best performance. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2625–2631, 2018  相似文献   

4.
Metal‐organic frameworks (MOFs) exhibit a huge potential for gas separation. ZIF‐8 is an interesting candidate due to its high thermal stability and its pore properties. By liquid phase epitaxy, the growth of the highly oriented surface‐anchored MOF ZIF‐8 on non‐porous and porous surfaces has been proven. The preparation of monolithic ZIF‐8 thin films supported by porous α‐Al2O3 substrates modified by a thin layer of Au is investigated. The layer‐by‐layer deposition process accomplished via a dipping procedure results in the formation of defect‐ or crack‐free membranes, preliminary characterized by the determination of ethane and ethene permeance.  相似文献   

5.
Si‐B‐C ceramics were prepared through reaction sintering, and the influence of Al2O3 addition on the high‐temperature (1100‐1300°C) oxidation behavior of the material under air atmosphere was studied. The erosion behavior and mechanism are determined from the measurement of weigh changes, microstructure observations, and characterization of the generated oxides on postexposure specimens. Results show that Al2O3 is enriched in the oxidized layer, inhibiting the volatilization of B2O3 and impeding the crystallization ability of oxide (cristobalite). Narrower erosion layer and less weigh change are observed with Al2O3. Low‐frequency Raman results reveals that with the increase in Al2O3, the bending vibrations of the BO4 units and B‐O‐B stretching of the metaborate ring relative intensity are enhanced. Furthermore, high‐frequency Raman results shows that the relative proportion of high‐dimensional vibration modes Q3 and Q4 which result in a higher viscosity of melt and a greater resistance of oxygen diffusion are positively correlated with Al2O3.  相似文献   

6.
The hydrophilic character of chitosan (CS) limits its use as a gate dielectric material in thin‐film transistors (TFTs) based on aqueous solution‐processable semiconductor materials. In this study, this drawback is overcome through controlled crosslinking of CS and report, for the first time, its application to aqueous solution‐processable TFTs. In comparison to natural CS thin films, crosslinked chitosan (Cr‐CS) thin films are hydrophobic. The dielectric properties of Cr‐CS thin films are explored through fabrication of metal–insulator–metal devices on a flexible substrate. Compared to natural CS, the Cr‐CS dielectric thin films show enhanced environmental and water stabilities, with a high breakdown voltage (10 V) and low leakage current (0.02 nA). The compatibility of Cr‐CS dielectric thin films with aqueous solution‐processable semiconductors is demonstrated by growing ZnO nanorods via a hydrothermal method to fabricate flexible TFT devices. The ZnO nanorod‐based TFTs show a high field‐effect mobility (linear regime) of 10.48 cm2 V?1 s?1. Low temperature processing conditions (below 100 °C) and water as the solvent are utilized to ensure the process is environmental friendly to address the e‐waste problem.  相似文献   

7.
In this study, the effect of CaO and BaO substitution on the viscosity and structure of CaO‐BaO‐SiO2‐MgO‐Al2O3 slags was investigated. The results showed that the viscosity increased with an increase in the BaO substitution concentration, which was correlated to an increase in the degree of polymerization (DOP) of the slag structural units as the activation energy increased from 207.9 to 263.8 kJ/mol for viscous flow. Deconvolution and area integration of the Raman spectrum of the slag revealed that the ratio of Q3/Q2 (Qi, i is the number of O0 in a [SiO4]‐tetrahedral unit) increased and NBO/Si (nonbridging oxygen per unit silicon atom) decreased with higher BaO content. It was also observed from the 27Al magic angles pinning nuclear magnetic resonance (27Al MAS‐NMR) spectrum that the relative proportion of AlIV increased, while that of AlV decreased because of the decrease in the percentage of nonbridging oxygen (O?), indicating the polymerization of the slag. O1s X‐ray photoelectron spectroscopy (XPS) was also carried out to semi‐quantitatively analyze the various types of oxygen anions present in the slag. The XPS results correlated well with the results obtained from the analysis of the Raman and 27Al MAS‐NMR spectra of the slags and its viscous behavior.  相似文献   

8.
The effect of heat treatment on the gas barrier of the polymer‐coated board further coated with an Al2O3 layer by atomic layer deposition (ALD) was studied. Heat treatment below the melting point of the polymer followed by quenching at room temperature was used for the polylactide‐coated board [B(PLA)], while over‐the‐melting‐point treatment was utilized for the low‐density polyethylene‐coated board [B(PE)] followed by quenching at room temperature or in liquid nitrogen. Heat treatment of B(PLA) and B(PE) followed by quenching at room temperature improved the water vapor barrier. However, because of the changes in the polymer morphology, quenching of B(PE) with liquid nitrogen impaired the same barrier. No improvement in oxygen barrier was observed explained by, e.g., the spherulitic structure of PLA and the discontinuities and possible short‐chain amorphous material around the spherulites forming passages for oxygen molecules. This work emphasizes the importance of a homogeneous surface prior to the ALD growth Al2O3 barrier layer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Polydopamine (PDA) was employed to modify micrometric Al2O3 platelets to improve the interfacial compatibility between α‐Al2O3 powder and ultrahigh‐molecular‐weight polyethylene (UHMWPE). The structure of PDA‐coated Al2O3 and UHMWPE composites was investigated via Fourier transform infrared spectroscopy, scanning electron microscopy and X‐ray photoelectron spectroscopy. The thermal stability and mechanical performance of the samples were also evaluated. It is clear that UHMWPE/PDA‐Al2O3 composites exhibit better mechanical properties, higher thermal stability and higher thermal conductivity than UHMWPE/Al2O3 composites, owing to the good dispersion of Al2O3 powder in the UHMWPE matrix and the strong interfacial force between the macromolecules and the inorganic filler caused by the presence of PDA. The tensile strength and the tensile elongation at break of UHMWPE/PDA‐Al2O3 composite with 1 wt% PDA‐Al2O3 are 62.508 MPa and 462%, which are 1.96 and 1.98 times higher than those of pure UHMWPE, respectively. The thermal conductivity of UHMWPE/PDA‐Al2O3 composite increases from 0.38 to 0.52 W m?1 K?1 with an increase in the dosage of PDA‐Al2O3 to 20 wt%. The results show that the prepared PDA‐coated Al2O3 powder can simultaneously enhance the mechanical properties and thermal conductivity of UHMWPE. © 2018 Society of Chemical Industry  相似文献   

10.
Single‐ and multi‐layer transparent conductive oxide (TCO) thin films exhibiting high performance, good packing density and low surface/interface roughness are deposited on silica glass substrates by the sol–gel method. The crystal and microstructural properties of the TCO thin films are evaluated as an alternate to films prepared by ultra‐high vacuum deposition. Tin‐doped indium oxide (ITO) thin films produced using a two‐step drying process showed low surface roughness because of dense packing structure not only horizontal but also vertical directions. As a result, electrical conductivity, carrier concentration, carrier mobility, and optical transmittance of 2.3 × 103 S/cm, 8 × 1020 cm?3, 18 cm2/Vs, and over 98% at 500 nm, respectively, were achieved. A multilayer ZnO/ITO stacked structure was also fabricated using the sol–gel process. Our findings suggest that solution‐based methods show promise as an alternative to existing ultra‐high vacuum methods to fabricate TCO thin films.  相似文献   

11.
BACKGROUND: The conversion of glycerol to value‐added derivatives is now critical, owing to the large surplus of glycerol from biodiesel production. The main objective of this work is to develop a novel process for converting solvent‐free glycerol to 1,2‐propanediol. RESULTS: Several catalysts were screened for aqueous‐phase hydrogenolysis of glycerol in an autoclave. The most effective catalysts (Ni/Al2O3, Cu/ZnO/Al2O3) were further tested for vapor phase hydrogenolysis in a fixed‐bed. Ni/Al2O3 did not prove as effective for the production of 1,2‐propanediol because of the high selectivity to CH4 and CO. Over Cu/ZnO/Al2O3, glycerol was mainly converted to the desired 1,2‐propanediol and the reaction intermediate acetol. The production of 1,2‐propanediol was favoured at higher hydrogen pressure. At 190 °C and 0.64 MPa, near complete conversion of glycerol was achieved with 1,2‐propanediol selectivity up to 92%. In addition, a higher concentration (between 43.4% and 0.8%) of acetol was detected and an approximately stoichiometric relationship was found between acetol and 1,2‐propanediol. CONCLUSION: 1,2‐propanediol can be produced with high yields via the vapor phase hydrogenolysis of glycerol over Cu/ZnO/Al2O3. Furthermore, the mechanism of 1,2‐propanediol formation is suggested to proceed mainly through an acetol route over Cu/ZnO/Al2O3. Copyright © 2008 Society of Chemical Industry  相似文献   

12.
ZnO thin films prepared by pulsed laser deposition at low temperature are utilized as the electron transport layer in CH3NH3PbI3?xClx‐based perovskite solar cells with a planar heterojunction structure. Oxygen pressure greatly influences the transparent and conductive properties of ZnO films, which are extremely important as electron transport layer for the perovskite solar cells. The transparent and conductive properties of the films under different oxygen pressures are studied by ultraviolet‐visible spectrophotometer and Hall effect measurement system. Through controlling the oxygen pressure, transparent ZnO films with high conductivity are grown and adopted as electron transport layer for planar perovskite solar cell with a power conversion efficiency of 6.3%. After further surface modification of ZnO electron transport layer with [6,6]‐phenyl‐C61‐butyric acid methyl ester, the efficiency of the planar solar cell increases to 7.5%.  相似文献   

13.
The synthesis and utilization of an α‐Mn2O3 nanocrystal catalyst for methanol‐to‐olefin reaction is described. A methanol conversion of 35% and a maximum selectivity of 80% toward ethylene were obtained at 250°C. In particular, formaldehyde, a primary intermediate for the reaction, was used to produce ethylene via a coupling reaction. A conversion of 45% and a selectivity of 66% to ethylene were achieved at 150°C in a formaldehyde stream. In situ diffuse reflectance infrared Fourier transform spectra reveal the formation of the surface CH2‐containing species during reaction, which implies that the main pathway for formaldehyde coupling is probably through interactions of those intermediates. In addition, the weakly adsorbed oxygen on the α‐Mn2O3 nanocrystal surface was found to play an important role in this reaction. © 2012 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

14.
High-k oxide dielectric films have attracted intense interest for thin-film transistors (TFTs). However, high-quality oxide dielectrics were traditionally prepared by vacuum routes. Here, amorphous high-k alumina (Al2O3) thin films were prepared by the simple sol-gel spin-coating and post-annealing process. The microstructure and dielectric properties of Al2O3 dielectric films were systematically investigated. All the Al2O3 thin films annealed at 300–600?°C are in amorphous state with ultrasmooth surface (RMS ~ 0.2?nm) and high transparency (above 95%) in the visible range. The leakage current of Al2O3 films gradually decreases with the increase of annealing temperature. Al2O3 thin films annealed at 600?°C showed the low leakage current density down to 3.9?×?10?7 A/cm2 at 3?MV/cm. With the increase of annealing temperature, the capacitance first decreases then increases to 101.1?nF/cm2 (at 600?°C). The obtained k values of Al2O3 films are up to 8.2. The achieved dielectric properties of Al2O3 thin films are highly comparable with that by vapor and solution methods. Moreover, the fully solution-processed InZnO TFTs with Al2O3 dielectric layer exhibit high mobility of 7.23?cm2 V?1 s?1 at the low operating voltage of 3?V, which is much superior to that on SiO2 dielectrics with mobility of 1.22?cm2/V?1 s?1 at the operating voltage of 40?V. These results demonstrate that solution-processed Al2O3 thin films are promising for low-power and high-performance oxide devices.  相似文献   

15.
A thin‐sheet Al‐fiber@meso‐Al2O3@Fe‐Mn‐K catalyst is developed for the mass/heat‐transfer limited Fischer–Tropsch synthesis to lower olefins (FTO), delivering a high iron time yield of 206.9 µmolCO s?1 at 90% CO conversion with 40% selectivity to C2‐C4 olefins under optimal reaction conditions (350°C, 4.0 MPa, 10,000 mL/(g·h)). A microfibrous structure consisting of 10 vol % 60‐µm Al‐fiber and 90 vol % voidage undergoes a steam‐only‐oxidation and calcination to create 0.6 µm mesoporous γ‐Al2O3 shell along with the Al‐fiber core. Active components of Fe and Mn as well as additives (K, Mg, or Zr) are then placed into the pore surface of γ‐Al2O3 shell of the Al‐fiber@meso‐Al2O3 composite by incipient wetness impregnation method. Neither Mg‐modified nor Zr‐modified structured catalyst yields better FTO results than K‐modified one, because of their lower reducibility, poorer carbonization property, and fewer basicity. The favorable heat/mass‐transfer characteristics of this new approach are also discussed. © 2015 American Institute of Chemical Engineers AIChE J, 62: 742–752, 2016  相似文献   

16.
A porous‐dense dual‐layer composite membrane reactor was proposed. The dual‐layer composite membrane composed of dense 0.5 wt % Nb2O5‐doped SrCo0.8Fe0.2O3‐δ (SCFNb) layer and porous Ba0.3Sr0.7Fe0.9Mo0.1O3‐δ (BSFM) layer was prepared. The stability of SCFNb membrane reactor was improved significantly by the porous‐dense dual‐layer design philosophy. The porous BSFM surface‐coating layer can effectively reduce the corrosion of the reducing atmosphere to the membrane, whereas the dense SCFNb layer permeated oxygen effectively. Compared with single‐layer dense SCFNb membrane reactor, no degradation of performance was observed in the dual‐layer membrane reactor under partial oxidation of methane during continuously operating for 1500 h at 850°C. At 900°C, oxygen flux of 18.6 mL (STP: Standard Temperature and Pressure) cm?2 min?1, hydrogen production of 53.67 mL (STP) cm?2 min?1, CH4 conversion of 99.34% and CO selectivity of about 94% were achieved. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4355–4363, 2013  相似文献   

17.
《Ceramics International》2016,42(13):14411-14415
Aluminum oxide (Al2O3)/zinc oxide (ZnO) thin films deposited via atomic layer deposition (ALD) are demonstrated to enhance their thermoelectric properties by manipulating them with a nano-thick Al2O3 interface. The overall superlattice structure is tuned by varying the ZnO ALD sequence and the Al2O3 ALD sequence while maintaining the same composition. An aluminum-doped zinc oxide (AZO) thin film is deposited at 250 °C, and the Al2O3 thickness in the superlattice is gradually increased from 0.13 nm to 1.23 nm. The total film composition is fixed at 2% AZO. We observe that an efficient superlattice structure is made with a specific Al2O3 thickness. The thermal conductivity is significantly decreased from 0.57 W/mK to 0.26 W/mK as the thickness of the Al2O3 layer is increased. Additionally, the absolute Seebeck coefficient is increased from 14 μV/K to 65 μV/K. This may be caused by the interface confinement effect and interface scattering between the ZnO layer and the Al2O3 layer. The figure of merit ZT value is 0.14 for the most efficient structure.  相似文献   

18.
P. Lan  Q. Xu  M. Zhou  L. Lan  S. Zhang  Y. Yan 《化学工程与技术》2010,33(12):2021-2028
Catalytic steam reforming of bio‐oil is an economically‐feasible route which produces renewable hydrogen. The Ni/MgO‐La2O3‐Al2O3 catalyst was prepared with Ni as active agent, Al2O3 as support, and MgO and La2O3 as promoters. The experiments were conducted in fixed bed and fluidized bed reactors, respectively. Temperature, steam‐to‐carbon mole ratio (S/C), and liquid hourly space velocity (LHSV) were investigated with hydrogen yield as index. For the fluidized bed reactor, maximum hydrogen yield was obtained under temperatures 700–800 °C, S/C 15–20, LHSV 0.5–1.0 h–1, and the maximum H2 yield was 75.88 %. The carbon deposition content obtained from the fluidized bed was lower than that from the fixed bed. The maximum H2 yield obtained in the fluidized bed was 7 % higher than that of the fixed bed. The carbon deposition contents obtained from the fluidized bed was lower than that of the fixed bed at the same reaction temperature.  相似文献   

19.
The catalytic activities of Cu/MOx (MOx = Al2O3, TiO2, and ZnO) catalysts in the gas‐phase hydrogenolysis of glycerol were studied at 180–300 °C under 0.1 MPa of H2. Cu/MOx (MOx = Al2O3, TiO2, and ZnO) catalysts were prepared by the incipient wetness impregnation method. After reduction, CuO species were converted to metallic copper (Cu0). Cu/Al2O3 catalysts with high acidity, high specific surface areas and small metallic copper size favored the formation of 1,2‐propanediol with a maximum selectivity of 87.9 % at complete conversion of glycerol and a low reaction temperature of 180 °C, and favored the formation of ethylene glycol and monohydric alcohols at high reaction temperature of 300 °C. Cu/TiO2 and Cu/ZnO catalysts exhibited high catalytic activity toward the formation of hydroxyacetone with a selectivity of approx. 90 % in a wide range of reaction temperature.  相似文献   

20.
This paper describes catalytic consequencesThis paper describes catalytic consequences of Pt/CeO2‐Al2O3 catalysts promoted with Ga species for propane dehydrogenation. A series of PtGa/CeO2‐Al2O3 catalysts were prepared by a sequential impregnation method. The as‐prepared catalysts were characterized employing N2 adsorption‐desorption, X‐ray diffrtaction, temperature programmed reduction, O2 volumetric chemisorption, H2‐O2 titration, and transmission electron microscopy. We have shown that Ga3+ cations are incorporated into the cubic fluorite structure of CeO2, enhancing both lattice oxygen storage capacity and surface oxygen mobility. The enhanced reducibility of CeO2 is indicative of higher capability to eliminate the coke deposition and thus is beneficial to the improvement of catalytic stability. Density functional theory calculations confirm that the addition of Ga is prone to improve propylene desorption and greatly suppress deep dehydrogenation and the following coke formation. The catalytic performance shows a strong dependence on the content of Ga addition. The optimal loading content of Ga is 3 wt %, which results in the maximal propylene selectivity together with the best catalytic stability against coke accumulation. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4365–4376, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号